Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of chemical & engineering data 19 (1974), S. 154-156 
    ISSN: 1520-5134
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Berkeley, Calif. : Berkeley Electronic Press (now: De Gruyter)
    International journal of chemical reactor engineering 4.2006, 1, A11 
    ISSN: 1542-6580
    Source: Berkeley Electronic Press Academic Journals
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: A multiphase reaction engineering model is being developed to investigate the dynamic and steady state behaviour of fluidized-bed catalytic reactors. It accounts for transients, axial and radial dispersion, temperature and pressure profiles, interphase mass and heat transfer, different hydrodynamic flow regimes, catalyst deactivation, reactions with changes in molar flows and various energy options. The model is general enough that it can treat catalytic systems, subject to mass and energy transfer resistances within the phases, as well as permeating membranes. It is able to handle multiple phases and regions (low-density phase, high-density phase, freeboard region and permselective membranes). The model reduces as special cases to a number of simpler fluidized bed reactor models previously reported in the literature, allowing evaluation of the influence of different simplifying assumptions. As a case study, the model is shown to simulate oxy-chlorination fluidized-bed reactors for the production of ethylene dichloride from ethylene, extending a recent paper by Abba et al. (Chem. Eng. Sci., (2002) 57, 4797-4807).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Berkeley, Calif. : Berkeley Electronic Press (now: De Gruyter)
    International journal of chemical reactor engineering 5.2007, 1, A17 
    ISSN: 1542-6580
    Source: Berkeley Electronic Press Academic Journals
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: A generalized modeling approach is used to develop a systematic algorithm for formulating and solving chemical/biochemical reaction engineering problems. This systematic approach is general enough that it can treat different systems with varying degrees of complexity utilizing the same methodology. The procedure can be used in both introductory and advanced chemical/biochemical reaction engineering courses. This will provide the students with a powerful "toolkit" to tackle a wide range of academic and industrial engineering problems as well as a solid starting point for developing research projects in this field. This may also allow the students to have a better understanding of the multiple phenomena encountered in chemical/biochemical engineering systems and encourage them to prepare models at an optimum level of sophistication for design, optimization, and exploration of novel ideas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Berkeley, Calif. : Berkeley Electronic Press (now: De Gruyter)
    International journal of chemical reactor engineering 5.2007, 1, A26 
    ISSN: 1542-6580
    Source: Berkeley Electronic Press Academic Journals
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: A novel fluidized bed membrane reactor with internal catalyst circulation is being developed for the production of high-purity H2 from an autothermal reformer. In order to provide guidance to pilot reactor testing, a cold model was built to study the influence of reactor configuration on hydrodynamics and catalyst circulation. It was found that catalyst circulation was reproducible, but that parallel non-communicating flow channels could lead to flow instability. Solids circulation was found to be adequate for design of the autothermal reformer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Berkeley, Calif. : Berkeley Electronic Press (now: De Gruyter)
    International journal of chemical reactor engineering 1.2002, 1, A2 
    ISSN: 1542-6580
    Source: Berkeley Electronic Press Academic Journals
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fluidized bed reactors for steam methane reforming, with and without immersed membrane surfaces for withdrawal of hydrogen, are modeled with oxygen added in order to provide the endothermic heat required by the reforming reactions. Porous alumina, palladium and palladium-coated high-flux tubes are investigated as separation materials, the latter two being permselective. Hydrogen yield and permeate hydrogen molar flow are predicted to decrease with increasing oxygen flow, and to increase with temperature. When the steam-to-carbon ratio increases, permeate hydrogen yield decreases slightly, while the total hydrogen yield increases for all configurations. The flow of oxygen required to achieve autothermal conditions depends on such factors as the reactor temperature, steam-to-carbon ratio and preheating of the feed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Berkeley, Calif. : Berkeley Electronic Press (now: De Gruyter)
    International journal of chemical reactor engineering 3.2005, 1, A41 
    ISSN: 1542-6580
    Source: Berkeley Electronic Press Academic Journals
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fluidized Bed Membrane Reactors (FBMR) offer significant advantages for steam reforming and the production of hydrogen. Potential advantages include higher yields by reducing thermodynamic equilibrium limitations, process intensification by combining three vessels into one, reduced temperatures of operation, countering the adverse effects of pressure, virtually eliminating catalyst diffusional limitations, high productivity per unit volume of reformer, and flexibility in using alternative feedstocks. Realization of the FBMR process for hydrogen production requires that a number of unusual challenges in reactor design be met. This paper discusses the technical challenges and outlines key factors which are being addressed in providing the membranes, reactor configuration and integrity, catalyst, energy integration and operating conditions needed to establish an economically viable FBMR process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Berkeley, Calif. : Berkeley Electronic Press (now: De Gruyter)
    International journal of chemical reactor engineering 3.2005, 1, A58 
    ISSN: 1542-6580
    Source: Berkeley Electronic Press Academic Journals
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: A novel fluidized bed membrane reactor has been developed for the production of high-purity hydrogen based on steam methane reforming (SMR). The reactor incorporates perm-selective membranes for in-situ removal of hydrogen from the reactor, thus shifting the thermodynamic equilibrium of the SMR reaction. The membranes also eliminate the need for downstream hydrogen purification. The endothermic reaction duty is provided either by external heating of the vessel wall or through direct air injection into the fluidized catalyst bed (autothermal reforming). The gas flow pattern within the fluidized bed induces internal circulation of catalyst particles between the central reaction (permeation) zone and outer heating zones. The circulating hot catalyst particles from the oxidation zone carry the required endothermic heat of reaction for the reforming while ensuring that the palladium membranes are not exposed to high temperatures or to oxygen. Another characteristic of the reactor configuration is that very little of the nitrogen present in the oxidation air reaches the reaction zone, thus maintaining the hydrogen driving force for the perm-selective membranes.The reactor concept was proven in a pilot reactor (0.13 m diameter, 2.3 m tall). A number of variables were studied, including steam-to-carbon ratio, temperature and pressure. The pilot reactor was operated with both external heating and direct air addition. Pure hydrogen (99.999+%) was obtained from the reactor and an equilibrium shift was demonstrated. The maximum pure hydrogen recovery obtained from the pilot reactor was 0.96 mol H2/mol CH4, limited by the installed membrane surface area for these tests.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 35 (1989), S. 1685-1691 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Heat transfer coefficients were measured for ciculating beds of sand particles of mean size 222 to 299 μm at temperatures of 340-880° C. Transfer coefficients were obtained for both a 1.22-m-long, 12.7-mm-OD vertical tube and a 1.59-m-long, 148-mm-wide membrane wall near the top of a 152-mm-square by 7.32-m-tall combustion column. For both surfaces and all temperatures, average heat transfer coefficients increased almost linearly with local suspension density which ranged from 0 to 70 kg/m3. Radiation played a significant role, especially at high temperatures and low suspension densities. Heat transfer coefficients also varied significantly with the lateral position of the tube. The vertical length of heat transfer surface is shown to be an important parameter allowing seemingly discrepant published results to be reconciled.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 1141-1152 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A dynamic model has been developed to predict the transient behavior of the temperature, the heat removal rate by the in-bed heat exchanger, and the flue-gas oxygen concentration for a circulating fluidized-bed (CFB) combustor. The model was incorporated into a control simulator to reproduce the combustion process within the overall program. The simulator predicts the behavior of the combustor under manual or automatic control to allow testing of control strategies. The model is validated by comparison with step-response tests carried out on a pilot CFB combustor. Discrepancies are attributable to unmodeled disturbances. Further validation, necessary to ensure the applicability of the simulator to control development, is provided by comparing control models identified experimentally using the pilot CFB to those obtained by simulation. Favorable comparison suggests that the dynamic model is suitable for use in control simulation.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...