Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The vomeronasal organ (VNO) is the receptor portion of the accessory olfactory system and transduces chemical cues that identify social hierarchy, reproductive status, conspecifics and prey. Signal transduction in VNO neurons is apparently accomplished via an inositol 1,4,5-trisphosphate (IP3)-activated calcium conductance that includes a different set of G proteins than those identified in vertebrate olfactory sensory neurons. We used immunohistochemical (IHC) and SDS–PAGE/western analysis to localize three IP3 receptors (IP3R) in the rat VNO epithelium. Type-I IP3R expression was weak or absent. Antisera for type-II and -III IP3R recognized appropriate molecular weight proteins by SDS–PAGE, and labeled protein could be abolished by pre-adsorption of the respective antibody with antigenic peptide. In tissue sections, type-II IP3R immunoreactivity was present in the supporting cell zone but not in the sensory cell zone. Type-III IP3R immunoreactivity was present throughout the sensory zone and overlapped that of transient receptor potential channel 2 (TRPC2) in the microvillar layer of sensory epithelium. Co-immunoprecipitation of type-III IP3R and TRPC2 from VNO lysates confirmed the overlapping immunoreactivity patterns. The protein–protein interaction complex between type-III IP3R and TRPC2 could initiate calcium signaling leading to electrical signal production in VNO neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 510 (1987), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The heterotrimeric G-protein Gs couples cell-surface receptors to the activation of adenylyl cyclases and cyclic AMP production (reviewed in refs 1, 2). RGS proteins, which act as GTPase-activating proteins (GAPs) for the G-protein α-subunits ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 193 (1996), S. 331-339 
    ISSN: 1432-0568
    Keywords: Synapse ; Cell migration ; Olfactory neurons ; Electron microscopy ; Vomeronasal organ
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Rat neonate vomeronasal organs were transplanted into the parietal cortex of littermates to examine their survival and the behavior of axon growth into the surrounding host brain parenchyma. After survival times of 10–100 days the brains were processed for ultrastructural examination. The transplanted vomeronasal organs (VNO) formed several vesicles lined with a sensory epithelium. From these sensory epithelia, VNO neurons leave the epithelium and enter the host brain. Transplant neurons grew axons that fasciculated into bundles surrounded by sheath cell processes and formed one or more fiber plexuses containing distinct globose or spherical-shaped glomeralar-like structures. The glomeruli consisted of nerve terminals between which existed asymmetric synaptic contacts. Rarely did we observe clear reciprocal synapses. The glomeruli also contained terminals that showed signs of degeneration, such as increased density of the terminals, clumping of mitochondria and multivesicular bodies. The glomeruli were not partitioned or subdivided by glial septa; however, glial profiles were interspersed among the sensory terminals. Transplant glomeruli also lacked periglomerular cells and had no definitive glial envelope. These results suggest that glomerular formation is not dependent on dendrite contribution of second order neurons or glial support, but rather on a complementary population of receptor neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 191 (1995), S. 319-327 
    ISSN: 1432-0568
    Keywords: Brain ; Glomerulus ; Axon ; Olfactory Regeneration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The present study was conducted to examine the survival and development of intracerebral transplanted neonatal rat vomeronasal organs (VNs). Complete neonatal (P5–P10) VNs were transplanted into the parietal cortex region of littermates and examined at 10–100 days by light microscopy. The VN survived and was organized into a series of vesicles lined by respiratory and/or sensory epithelia. Sensory neurons grew long axons that fasciculated and invaded the surrounding brain parenchyma. The newly developed axons did not prefer a specific brain region. The axons developed a complex fiber plexus either at the interface between transplant and host tissue or deep within the host brain parenchyma. Vomeronasal axons consistently formed glomerular-like structures within the fiber plexus. Our results suggest that glomerular formation is not dependent on specific target or length of axon development, but rather on a set of complementary axons that display mutual recognition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 18 (1989), S. 393-405 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The olfactory epithelium of the adult hamster (Mesocricetus auratus) was examined with the scanning electron microscope following olfactory nerve axotomy. Axotomy results in retrograde degeneration of mature olfactory neurons. Maximum degeneration was observed around day 4. During the degeneration period the epithelium consists primarily of supporting and basal cells. Microvillar columnar supporting cells were observed to have fine cellular processes extending from their lateral border to neighbouring cells. Supporting cells extended to the basal lamina where they terminated in foot-like processes of variable shapes (club, splay and hook). Basal cells which gave rise to new replacement olfactory neurons were observed near the basal lamina. They had a rough cellular surface covered with small granules and fine cellular extensions. Bowman's gland duct cells extended unbranched through the epithelium where they formed funnel duct openings covered with microvilli. During early recovery periods (5–30 days) the number of olfactory neurons in the lower epithelium region increased. We observed olfactory neurons with developing axon and dendritic processes. Specialized growth cone structures were seen at the tips. Olfactory neuron growth cones were elongated or club-shaped and had a ruffled membrane surface. Several thin filopodia extended from the growth cone and made contact with adjacent cells. At late recovery periods (35–120 days) there was a marked increase in the number of olfactory neurons within the middle and lower epithelium regions. Numerous dendritic processes extended to the epithelial surface and terminated in knob-like ciliated structures. Olfactory axons passed basally, forming small intra-epithelial bundles that penetrated the basal lamina then fasciculated into larger bundles within the lamina propria. This study provides detailed three-dimensional observations of the olfactory epithelium following neuron injury, and describes neural degenerative changes, replacement of olfactory neurons, development and maturation. In addition, we describe the structure and basal attachment of supporting cells and their glial-like relation with olfactory neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 18 (1989), S. 381-391 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The olfactory epithelium of the adult hamster (Mesocricetus auratus) was studied using the scanning electron microscope. A method that produced fractures in the epithelium exposed structures below the surface and made it possible to examine the morphological and structural relationships among cells. Three cell types were studied: supporting cells, olfactory neurons (receptor cells) and basal cells. Supporting cells were observed spanning the full extent of the epithelium, and had basal foot processes that terminated at or near the basal lamina. Along the lateral margin of supporting cells, cellular processes were observed extending outwards, reaching olfactory neurons and adjacent supporting cells. These cellular contacts among supporting cells and olfactory neurons were present at different levels of the epithelium. Olfactory neurons were located primarily in the middle and lower epithelial regions. Their dendritic processes reached the epithelial surface in a straight or tortuous manner, passing between the supporting cells. Olfactory axons were observed as thin unbranched processes that emerged from a conical hillock region, passed basally, and fasciculated into larger sensory bundles within the lamina propria. Basal cells were observed adjacent to the basal lamina as a row of single cells or clustered in groups. Within the lamina propria connective tissue, blood vessels, axon bundles and Bowman's glands were examined. Bowman's glands were composed of pyramidal secretory cells arranged about a single duct that extended to the epithelial surface. Scanning electron microscopy provided a unique three-dimensional analysis of cell structure within the olfactory epithelium. The results provide new and different observations on the detailed morphology and intimate relationships that exist among epithelial cells, and complement previous light and transmission EM observations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Microscopy Research and Technique 23 (1992), S. 49-61 
    ISSN: 1059-910X
    Keywords: Olfactory neuron ; Neurogenesis ; Plasticity ; Electron Microscopy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: Human olfactory epithelium is similar in organization and cell morphology to that of most vertebrate species. The epithelium has a pseudostratified columnar organization and consists of olfactory neurons, supporting and basal cells. Near the mucosal surface there are also microvillar cells. These cells have neuron-like features and may be chemoreceptors. Human olfactory epithelium is not a uniform sensory sheet. Patches of non-sensory tissue often appear in what was thought to be a purely olfactory region. The significance of these patches has not been determined, but they could reflect exposure to environment agents or changes that occur during the normal aging process.In order to better understand the human olfactory system, further knowledge of the normal structure is necessary. This review addresses the morphology of the human olfactory epithelium and the remarkable plasticity of the vertebrate olfactory system. © 1992 Wiley-Liss, Inc.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...