Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 876-878 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Strained single-quantum-well, broadened-waveguide GaInAsSb/AlGaAsSb diode lasers have exhibited room-temperature threshold current densities as low as 50 A/cm2, one of the lowest values reported for diode lasers at room temperature. These lasers, grown by molecular beam epitaxy, have emission wavelengths of ∼2.05 μm, characteristic temperature of 65 K, internal quantum efficiency of 95%, and internal loss coefficient of 7 cm−1. Single-ended cw power of 1 W is obtained for a 100-μm aperture. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 3980-3982 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The impact of the Ga/N ratio on the structure and electrical activity of threading dislocations in GaN films grown by molecular-beam epitaxy is reported. Electrical measurements performed on samples grown under Ga-rich conditions show three orders of magnitude higher reverse bias leakage compared with those grown under Ga-lean conditions. Transmission electron microscopy (TEM) studies reveal excess Ga at the surface termination of pure screw dislocations accompanied by a change in the screw dislocation core structure in Ga-rich films. The correlation of transport and TEM results indicates that dislocation electrical activity depends sensitively on dislocation type and growth stoichiometry. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 81 (2002), S. 79-81 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Excess reverse-bias leakage in GaN films grown by molecular beam epitaxy on GaN templates is correlated with the presence of pure screw dislocations. A scanning current–voltage microscope was used to map the spatial locations of leakage current on high quality GaN films under reverse bias. Two samples with similar total dislocation density (∼109 cm−2) but with pure screw dislocation density differing by an order of magnitude were compared. We found that the density of reverse-bias leakage spots correlates well with pure screw dislocation density, not with mixed dislocation density. Thus, pure screw dislocations have a far more detrimental impact on gate leakage than edge or mixed dislocations. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 1685-1687 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The reverse bias leakage current in macroscopic GaN Schottky diodes is found to be insensitive to barrier height. Using a scanning current–voltage microscope, we show that the reverse bias current occurs at small isolated regions, while most of the sample is insulating. By comparing the current maps to topographic images and transmission electron microscopy results, we conclude that reverse bias leakage occurs primarily at dislocations with a screw component. Furthermore, for a fixed dislocation density, the V/III ratio during the molecular beam epitaxial growth strongly affects reverse leakage, indicating complex dislocation electrical behavior that is sensitive to the local structural and/or chemical changes. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on the growth and transport properties of high-mobility two-dimensional electron gases (2DEGs) confined at the AlGaN/GaN interface grown by plasma-assisted molecular-beam epitaxy on GaN templates prepared by hydride vapor phase epitaxy. We have grown samples over a broad range of electron densities ranging from ns=6.9×1011 to 1.1×1013 cm−2, and at T=4.2 K, observe a peak mobility of 53 300 cm2/V s at a density of 2.8×1012 cm−2. Magnetotransport studies on these samples display exceptionally clean signatures of the quantum Hall effect. Our investigation of the dependence of 2DEG mobility on carrier concentration suggests that the low-temperature mobility in our AlGaN/GaN heterostructures is currently limited by the interplay between charged dislocation scattering and interface roughness. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 71 (1997), S. 3758-3760 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A large increase in the quantum efficiency (QE) and open-circuit voltage Voc of GaInAsSb thermophotovoltaic (TPV) devices is obtained by the use of an AlGaAsSb window layer compared with devices without a window layer. The TPV structure, grown on GaSb substrates by organometallic vapor phase epitaxy or molecular beam epitaxy, consists of a 1-μm-thick n-GaInAsSb base layer, a 3-μm-thick p-GaInAsSb emitter layer, a 100-nm-thick AlGaAsSb window layer, and a 25-nm-thick GaSb contacting layer. The band-gap energy of the lattice-matched GaInAsSb is 0.53–0.55 eV. The peak internal QE of the TPV cells with the window is 〉90%, compared with less than 60% for those without the window. At a short-circuit current density of ∼1000 mA/cm2, Voc of ∼300 meV is obtained for cells with the window layer, compared with less than 220 meV without the window layer. These increases are attributed to a substantial decrease in the surface recombination velocity with the window layer. Based on a standard calculation, the electron diffusion length in the p-GaInAsSb layer is at least 5 μm. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 64 (1994), S. 3311-3313 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A cw output power up to 0.8 mW is obtained from a low-temperature-grown (LTG) GaAs, 0.3 μm gap, interdigitated-electrode photomixer operating at room temperature and pumped by two modes of a Ti:Al2O3 laser separated in frequency by 0.2 GHz. The output power and associated optical-to-electrical conversion efficiency of 1% represent more than a sixfold increase over previous LTG-GaAs photomixer results obtained at room temperature. A separate LTG-GaAs photomixer having 0.6 μm gaps generated up to 0.1 mW at room temperature and up to 4 mW at 77 K. Low-temperature operation is beneficial because it reduces the possibility of thermal burnout and it accentuates a nearly quartic dependence of output power on bias voltage at high bias. The quartic dependence is explained by space-charge effects which result from the application of a very high electric field in the presence of recombination-limited transport. These conditions yield a photocurrent-voltage characteristic that is very similar in form to the well-known Mott–Gurney square-law current in trap-free solids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 63 (1993), S. 521-523 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Measurements of the small-signal admittance and the large-signal switching time of In0.53Ga0.47As/AlAs resonant-tunneling diodes are presented. The small-signal admittance in the positive differential-resistance region is found to be only a weak function of frequency. In contrast, the admittance in the negative differential-resistance region is a strong function of frequency, and the associated time constant is a strong function of bias voltage. It is found that the large-signal switching time is approximately a factor of 10 greater than the small-signal time constant.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 62 (1993), S. 1206-1208 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A low-temperature-grown GaAs interdigitated-electrode photomixer is used to generate coherent power at microwave frequencies. An output power of 200 μW (−7 dBm) is generated by pumping the photomixer with two 70-mW modes of a Ti:Al2O3 laser, separated in frequency by 200 MHz. This represents an optical-to-microwave conversion efficiency of 0.14%, which is within 50% of a prediction based on optical-heterodyne theory. When two lasers are used and the frequency of one is tuned with respect to the other, the output frequency of the photomixer increases smoothly and the output power is nearly constant up to 20 GHz. At higher frequencies the power decays because of parasitic capacitance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 62 (1993), S. 3016-3018 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A triple-well resonant-tunneling structure made from the In0.53Ga0.47As/AlAs material system yields a broad negative differential resistance (NDR) region without the precipitous drop in current that occurs in single-well structures. This NDR characteristic is attributed to resonant tunneling through mixed quasibound states. A diode made from this structure is used to generate a nearly constant power of 0.5 mW up to 16 GHz.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...