Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Most mathematical models for the spread of disease use differential equations based on uniform mixing assumptions or ad hoc models for the contact process. Here we explore the use of dynamic bipartite graphs to model the physical contact patterns that result from movements of individuals ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of combinatorial optimization 2 (1998), S. 257-288 
    ISSN: 1573-2886
    Keywords: Complexity ; NP-hardness ; Approximation Algorithms
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We study budget constrained network upgrading problems. Such problems aim at finding optimal strategies for improving a network under some cost measure subject to certain budget constraints. Given an edge weighted graph G = (V, E), in the edge based upgrading model, it is assumed that each edge e of the given network also has an associated function ce (t) that specifies the cost of upgrading the edge by an amount t. A reduction strategy specifies for each edge e the amount by which the length ℓ(e) is to be reduced. In the node based upgrading model, a node v can be upgraded at an expense of c(v). Such an upgrade reduces the delay of each edge incident on v. For a given budget B, the goal is to find an improvement strategy such that the total cost of reduction is at most the given budget B and the cost of a subgraph (e.g. minimum spanning tree) under the modified edge lengths is the best over all possible strategies which obey the budget constraint. After providing a brief overview of the models and definitions of the various problems considered, we present several new results on the complexity and approximability of network improvement problems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-13
    Description: Several practical instances of network design problems require the network to satisfy multiple constraints. In this paper, we address the \emph{Budget Constrained Connected Median Problem}: We are given an undirected graph $G = (V,E)$ with two different edge-weight functions $c$ (modeling the construction or communication cost) and $d$ (modeling the service distance), and a bound~$B$ on the total service distance. The goal is to find a subtree~$T$ of $G$ with minimum $c$-cost $c(T)$ subject to the constraint that the sum of the service distances of all the remaining nodes $v \in V\setminus T$ to their closest neighbor in~$T$ does not exceed the specified budget~$B$. This problem has applications in optical network design and the efficient maintenance of distributed databases. We formulate this problem as bicriteria network design problem, and present bicriteria approximation algorithms. We also prove lower bounds on the approximability of the problem that demonstrate that our performance ratios are close to best possible
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-17
    Description: An instance of the \emph{maximum coverage} problem is given by a set of weighted ground elements and a cost weighted family of subsets of the ground element set. The goal is to select a subfamily of total cost of at most that of a given budget maximizing the weight of the covered elements. We formulate the problem on graphs: In this situation the set of ground elements is specified by the nodes of a graph, while the family of covering sets is restricted to connected subgraphs. We show that on general graphs the problem is polynomial time solvable if restricted to sets of size at most~$2$, but becomes NP-hard if sets of size~$3$ are permitted. On trees, we prove polynomial time solvability if each node appears in a fixed number of sets. In contrast, if vertices are allowed to appear an unbounded number of times, the problem is NP-hard even on stars. We finally give polynomial time algorithms for special cases where the subgraphs form paths and the host graph is a line, a cycle or a star.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...