Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0992-7689
    Keywords: Magnetospheric physics (electric fields ; plasma convection ; instruments and techniques)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We present the first electron time-of-flight measurements obtained with the Electron Drift Instrument (EDI) on Equator-S. These measurements are made possible by amplitude-modulation and coding of the emitted electron beams and correlation with the signal from the returning electrons. The purpose of the time-of-flight measurements is twofold. First, they provide the drift velocity, and thus the electric field, when the distance the electrons drift in a gyro period becomes sufficiently large. Second, they provide the gyro time of the electrons emitted by the instrument, and thus the magnitude of the ambient magnetic field, allowing in-flight calibration of the flux-gate magnetometer with high precision. Results of both applications are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0992-7689
    Keywords: Magnetospheric physics (electric fields ; plasma convection ; instruments and techniques)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We present the first triangulation measurements of electric fields with the electron drift instrument (EDI) on Equator-S. We show results from five high-data-rate passes of the satellite through the near-midnight equatorial region, at geocentric distances of approximately 5–6 RE, during geomagnetically quiet conditions. In a co-rotating frame of reference, the measured electric fields have magnitudes of a few tenths of mV/m, with the E × B drift generally directed sunward but with large variations. Temporal variations of the electric field on time scales of several seconds to minutes are large compared to the average magnitude. Comparisons of the “DC” baseline of the EDI-measured electric fields with the mapped Weimer ionospheric model and the Rowland and Wygant CRRES measurements yield reasonable agreement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 76 (1981), S. 35-47 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We have modeled the magnetosphere by superimposing a dipole field, a uniform field and a perturbation field due to a simple current system. This current system consists of a ring current in the neutral line of the dipole plus uniform fields, together with vertical currents representing field-aligned currents to the neutral line. The current circuit is closed by two additional ring currents above and below the equatorial plane representing distributed adiabatic perpendicular currents. This system produces many magnetospheric features including a magnetopause, bending of magnetic field lines in the anti-solar direction, a magnetotail, and cusps on the day-side of the Earth. Our aim is to demonstrate that it is not necessary to think of the magnetic field topology as being caused by the flowing plasma carrying field lines. The fundamental physical problem is to derive the current system from the self-consistent interaction of the solar-wind and magnetospheric plasmas and fields.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Electron Drift Instrument (EDI) measures the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one or more gyrations. This drift is related to the electric field and the gradient in the magnetic field, and these quantities can, by use of different electron energies, be determined separately. As a by-product, the magnetic field strength is also measured. The present paper describes the scientific objectives, the experimental method, and the technical realization of the various elements of the instrument.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 144 (1988), S. 201-213 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The sudden and dramatic acceleration of charged particles seems to be a universal phenomenon which occurs in plasmas occupying a wide range of spatial scales. These accelerations are typically accompanied by intrusions of the energized plasma into adjacent regions of space. A physical understanding of these processes can only be obtained by carefully coordinated experimental and theoretical studies which are designed to let nature display what is happening without imposing limitations associated with existing paradigms. Studies of the Earth's magnetosphere are hampered by the lack of adequate sampling in space and time. The ‘feature matching’ technique of building magnetic and electric field models can help compensate for the extreme sparseness of experimental data but many future studies will still require large numbers of spacecraft placed in carefully coordinated orbits. History shows that magnetospheric research has sometimes faltered while various attractive conjectures were explored, but that direct observations play the role of a strict teacher who has little concern for the egos of scientists. Presumably this teacher will also discard the author's pet notion: that the ‘ignition’ of portions of the ‘auroral shell’ in association with ‘Earth flares’ results in the heating of ionospheric particles (and some particles of solar origin) that are then convected inward to form the ring current. The author, of course, hopes that at least some aspects of this notion will surive and will help lead the way to a better understanding of the Earth's neighbourhood.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...