Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 201 (1992), S. 334-339 
    ISSN: 1432-041X
    Keywords: Mesoderm ; FGF receptors (flg) ; Growth factors ; Embryonic induction ; Competence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mesoderm formation is a result of cell-cell interactions between the vegetal and animal hemisphere and is thought to be mediated by inducing peptide growth factors including members of the FGF and TGFβ superfamilies. Our immunochemical study analyses the distribution of FGF receptors coded by the human flg gene during embryogenesis of Xenopus laevis. Immunostaining was detected in the dorsal and ventral ectoderm and also in the marginal zone of early cleavage, blastula and gastrula stages. Signals were very strong in the mid and late blastula (stage 8 and 9) and declined slightly in the early gastrula (stage 10). A dramatic decrease was observed up to the late gastrula (stage 11+). In stage 13 embryos, immunostaining was only found in cells around the blastopore. Isolated ectoderm cultured in vitro showed a similar temporal expression and decrease of the signal as the normal embryos. These results indicate that receptor expression is independent of the interaction of the animal cells with the vegetal part of the embryo. Of interest is the fact that the signal cannot only be found at or near the cell surface but also within the cell. This suggests the presence of an intracellular isoform of the receptor resulting from the endogenous expression of splice variants and the internalization of transmembrane receptor. Taken together our results suggest that the loss of competence (for bFGF around stage 10) is not directly correlated with the presence of receptors. The possible roles of heparan sulphate glucosaminoglycans (low affinity receptors) and control mechanisms in the intracellular signalling pathway downstream of the receptor level should be taken into consideration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1600-0714
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Fibroblast growth faclor-1 (FGF-l) and FGF-2 are heparin-binding polypeplides that are potent mitogens for neoplastic cells. In this study, fibroblast growth factor-1 (FGF-l), FGF-2, and fibroblast growth factor receptor-1 (FGfR-1) were immunohistochemically analyzed in 10 patients with pleomorphic adenoma of the salivary gland by using specific monoclonal antibodies. The tumor tissues were histopathologically classified as: tubular, solid, myxoid or chondroid. Both FGF-1 and FGF-2 were immunohistochemically identified in the tumor cells of all histological types. In addition, immunoreactive FGF-2 was also found in the basement membrane of tubular type tumor cells. Conversely. FGfR-1-positive tumor cells were essentially confined to the tubular and solid areas of tumors. Tumor cells in the myxoid and chondroid areas were FGfR-1 immunonegative. These results suggest that the co-expression of FGF and its receptor appears to be related to the proliferative activity of tumor cells in the tubular and solid areas, whereas loss of FGF receptor expression may be associated with the differentiation of tumor cells into myxoid and chondroid tissue types.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Methods in cell science 10 (1986), S. 151-154 
    ISSN: 1573-0603
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The maintenance and proliferation of isolated prostate epithelial cells is androgen independent, but requires multiple other hormones and hormonelike growth factors. Methods are described for isolation and characterization of epithelial cells from normal rat prostate and the androgen-responsive transplantable Dunning R3327 rat tumor. Pure tumor-derived cell lines can be established by serial culture techniques. The normal primary and serially cultured cell lines are then used to assay growth factors. Cell proliferation is quantitated by computerized videometry.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-4935
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Supramolecular Structure and Cellular Biochemistry 15 (1981), S. 83-110 
    ISSN: 0275-3723
    Keywords: cell growth ; nutrients ; growth factors ; transformation ; cloning ; kinetic analysis ; Chemistry ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The principles of enzyme kinetic analysis were applied to quantitate the relationships among serum-derived growth factors, nutrients, and the rate of survival and multiplication of human fibroblasts in culture. The survival or multiplication rate of a population of cells plotted against an increasing concentration of a growth factor or nutrient in the medium exhibited a hyperbolic pattern that is characteristic of a dissociable, saturable interaction between cells and the ligands. Parameters equivalent to the Km and Vmax of enzyme kinetics were assigned to nutrients and growth factors. When all nutrient concentrations were optimized and in steady state, serum factors accelerated the rate of multiplication of a normal cell population. The same set of nutrients that supported a maximal rate of multiplication in the presence of serum factors supported the maintenance of non-proliferating cells in the absence of serum factors. Therefore, under this condition, serum factors are required for cell division and play a purely regulatory iole in multiplication of the cell population. The quantitative requirement for 18 nutrients of 29 that were examined was significantly higher (P 〈 0.001) for cell multiplication in the presence of serum factors than for cell maintenance in the absence of serum factors. This indicated specific nutrients that may be quantitatively important in cell division processes as well as in cell maintenance. The quantitative requirement for Ca2+, Mg2+, K+, Pi, and 2-oxocarboxylic acid for cell multiplication was modified by serum factors and other purified growth factors. The requirement for over 30 other nutrients could not clearly be related to the level of serum factors in the medium. Serum factors also determined the Ca2+, K+, and 2-oxocarboxylic acid requirement for maintenance of non-proliferating cells. Therefore, when either Ca2+, K+, or 2-oxocarboxylic acid concentration was limiting, factors in serum played a role as cell “survival or maintenance” factors in addition to their role in cell division as “growth regulatory” factors. However, with equivalent levels of serum factors in the medium, the requirement for Ca2+, K+, and 2-oxocarboxylic acids was still much higher for multiplication than for maintenance. Kinetic analysis revealed that the concentrations of individual nutrients modify the quantitative requirement for others for cell multiplication in a specific pattern. Thus, specific quantitative relationships among different nutrients in the medium are important in the control of the multiplication rate of the cell population. When all nutrient concentrations were optimal for multiplication of normal cells, the multiplication response of SV40-virus-transformed cells to serum factors was similar to that of normal cells. When serum factors were held constant, transformed cells required significantly less (P 〈 0.001) of 12 of the 26 nutrients examined. Therefore, the transformed cells only have a growth advantage when the external concentration of specific nutrients limits the multiplication rate of normal cells. Taken together, the results suggest that the control of cell multiplication is intimately related to external concentrations of nutrients. Specific growth regulatory factors may stimulate cell proliferation by modification of the response of normal cells to nutrients. Transforming agents may confer a selective growth advantage on cells by a constitutive alteration of their response to extracellular nutrients.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 39 (1994), S. 69-82 
    ISSN: 1040-452X
    Keywords: Signal transduction ; Cytokines ; Cancer ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Splice variations in genes coding for the transmembrane FGF receptor (FGFR) result in isoforms that vary in the ectodomain, intracellular juxtamembrane domain, and the intracellular kinase domain. An analysis of biochemical functions of distinct recombinant isoforms expressed in baculoviral-infected insect cells allowed generation of models for function of splice variants in both the ecto- and intracellular domains. A structural model for the ectodomain of the FGFR is proposed as follows. Alternately-spliced immunoglobulin-like disulfide Loop I, which is not required for ligand-binding, is sufficiently interactive with the base FGF binding site formed by Loops II and III to modify ligand affinity and affect interaction of the receptor with heparan sulfate cofactor. The NH2-terminal domain of Loop II, which is highly conserved across all isoforms, exhibits a 19-residue heparin-binding domain which is obligatory for FGF binding. Heparin protects a 30-kDa ligand-binding fragment from proteolysis that is composed of Loop II, the inter-Loop II/III sequence, and the NH2-terminus of Loop III. This suggests that the high-affinity FGF receptor complex is an intimate ternary complex of transmembrane tyrosine kinase, heparan sulfate glycosaminoglycan, and FGF, each of which have interactive binding domains for the other and may contribute to specificity of the FGFR complex. Although Ig Loop II, the inter-Loop II/III sequence, and the NH2-terminus of Loop III with heparan sulfate form the base FGF binding site, mutually exclusive alternate splicing of two exons coding for the COOH-terminal half of Loop III determines which specific members of the FGF ligand family bind with high affinity to the base site.A kinase- and tyrosine phosphorylation site-defective splice variant, FGFR type 2, acts as a dominant-negative suppressor of phosphorylation of specifically tyr-653 in the catalytic domain of the kinase, with less effect on phosphorylation of tyr-766 in the COOH-terminal tail. We propose that phosphorylation of tyr-766, which is required for interaction of phospholipase Cγ1 (PLCγ1) with the receptor, may occur by a cis-intramolecular mechanism within FGFR monomers, while phosphorylation of tyr-653, which is required for phosphorylation of PLCγ1, may occur by a trans-intermolecular mechanism between monomers within kinase homodimers. From the combined results, we propose a model whereby increasing concentrations of FGF may control FGF-mediated signal transduction by heterodimerization of different FGFR monomers. Different monomers arise by regulated combinatorial alternate splicing that alters both the extracellular and intracellular domains. © 1994 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 101 (1979), S. 9-16 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: When serum is made rate-limiting for clonal multiplication of human diploid fibroblasts, the presence of a 2-oxocarboxylic acid in the medium becomes essential. The requirement is independent of the 20 amino acids and glucose. Glyoxylic, pyruvic, 2-oxoglutaric, and oxalacetic acids are most effective. The types of 2-oxocarboxylic acids that support multiplication are oxidized substrates for several, pyridine nucleotide-linked intracellular oxidoreductases. The requirement is not satisfied by carboxylic acids, oxidized substrates for oxidoreductases that are not linked to pyridine nucleotides, or by nonspecific electron acceptors. The quantitative requirement for 2-oxocarboxylic acids in cell multiplication is markedly affected by the concentration of serum proteins in the medium. Therefore, 2-oxocarboxylic acid metabolism may be related to the mechanism by which serum growth factors regulate cell multiplication.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 129 (1986), S. 207-214 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Recently improved culture conditions for human adult arterial endothelial and smooth muscle cells from a wide variety of donors have been used to study the effects of lipoproteins on proliferation of both cell types in low serum culture medium. Optimal growth of endothelial and smooth muscle cells in an optimal nutrient medium (MCDB 107) containing epidermal growth factor, a partially purified fraction from bovine brain, and 1% (v/v) lipoprotein-deficient serum was dependent on either high- or low-density lipoprotein. High- and low-density lipoprotein stimulated cell growth by three- and five-fold, respectively, over a 6-day period. Optimal stimulation of both endothelial and smooth muscle cell growth occurred between 20 and 60 μg/ml of high- and low-density lipoproteins, respectively. No correlation between the activation of 3-hydroxyl-3-methylglutaryl coenzyme A reductase activity and lipoprotein-stimulated cell proliferation was observed. Lipid-free total apolipoproteins or apolipoprotein C peptides from high-density lipoprotein were partially effective and together with oleic acid effectively replaced native high-density lipoprotein for the support of endothelial cell growth. In contrast, apolipoproteins or apolipoprotein C peptides from high-density lipoprotein alone or with oleic acid had no effect on smooth muscle cell proliferation. The results suggest a functional role of high- and low-density lipoproteins and apolipoproteins in the proliferation of human adult endothelial and smooth muscle cells.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 110 (1982), S. 142-148 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A sensitive isotope exchange method was developed to assess the requirements for and compartmentation of pyruvate and oxalacetate production from malate in proliferating and nonproliferating human fibroblasts. Malatedependent pyruvate production (malic enzyme activity) in the particulate fraction containing the mitochondria was dependent on either NAD+ or NADP+. The production of pyruvate from malate in the soluble, cytosolic fraction was strictly dependent on NADP+. Oxalacetate production from malate (malate dehydrogenase, EC 1.1.1.37) in both the particulate and soluble fraction was strictly dependent on NAD+. Relative to nonproliferating cells, NAD+-linked malic enzyme activity was slightly reduced and the NADP+-linked activity was unchanged in the particulate fraction of serum-stimulated, exponentially proliferating cells. However, a reduced activity of particulate malate dehydrogenase resulted in a two-fold increase in the ratio of NAD(P)+-linked malic enzyme to NAD+-linked malate dehydrogenase activity in the particulate fraction of proliferating fibroblasts. An increase in soluble NADP+-dependent malic enzyme activity and a decrease in NAD+-linked malate dehydrogenase indictated an increase in the ratio of pyruvate-producing to oxalacetate-producing malate oxidase activity in the cytosol of proliterating cells. These coordinate changes may affect the relative amount of malate that is oxidized to oxalacetate and pyruvate in proliferating cells and, therefore, the efficient utilization of glutamine as a respiratory fuel during cell proliferation.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...