Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2072
    Keywords: Forced swimming test ; Antidepressants ; Stress ; Diazepam ; Rats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Antidepressant-induced anti-immobility effects have been assessed in animals exposed or not to a pretest session using the forced swimming test. Desipramine, maprotiline, mianserine (15 and 30 mg/kg), nomifensine (2.5 and 5 mg/kg), d-amphetamine (1 and 2 mg/kg) and muscimol (1 and 2 mg/kg), unlike imipramine (15 and 30 mg/kg), LY-171555 (0.1 and 0.2 mg/kg) and scopolamine (0.5 and 0.1 mg/kg), did not reduce immobility time in rats which had not received the pretest session. On the other hand, all of the drugs tested reduced immobility time in rats exposed to a pretest session. In addition, the degree of anti-immobility effects of desipramine (20 mg/kg) and nomifensine (5 mg/kg) increased proportionally with the level of water (0, 4, 15 and 30 cm) to which animals were exposed at the time of pretest. Furthermore, desipramine reduced immobility time in rats pre-exposed to types of stress different from forced swimming, cold, restraint or foot-shock. All drugs were injected intraperitoneally three times, 24, 5 and 1 h before testing. The present findings suggest that a stressful pretest session may reveal pharmacological properties of antidepressants in the forced swimming test. This is also substantiated by the fact that diazepam (2.5 and 5 mg/kg) administered 30 min before the swimming pretest antagonized the anti-immobility effect of 15 mg/kg desipramine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 98 (1989), S. 207-211 
    ISSN: 1432-2072
    Keywords: Animal model of anxiety ; Hyperthermia ; Mouse ; Anxiolytics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Among animals from the same cage, mice removed last had a higher temperature compared to those removed first. This phenomenon a) persisted 2 and 24 h later; b) was present regardless of the number of the animals (5, 10, 15 and 20) in each cage, c) was independent of whether the number of animals was reduced or maintained constant in the cage and d) could even be observed by reversing the order of removal of the animals from the cage. In addition, the fewer the animals allocated to a cage the greater the percentage of those which became hyperthermic. This rise in rectal temperature of mice removed last was prevented by diazepam (2.5 and 5 mg/kg PO, 30 min), nitrazepam (2 and 4 mg/kg PO, 30 min) but not by imipramine (15 and 30 mg/kg PO, 30 min) or haloperidol (0.5 and 1 mg/kg PO, 60 min) and was observed in a greater opercentage of mice following subcutaneous yohimbine treatment (2 mg/kg, 60 min). This phenomenon does not seem to depend on physical exercise due to an attempt to escape, since no correlation appears to exist between motor activity (open-field) and rise in rectal temperature. These data would seem to indicate that hyperthermia in the last animals may represent a new tool for studying the neurobiology of anticipatory(?) anxiety.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 94 (1988), S. 147-160 
    ISSN: 1432-2072
    Keywords: Forced swimming test ; Depression ; Validity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The forced swimming test is reviewed. This test appears to be suitable for detecting antidepressant activity in rats but not in mice. Difference in experimental procedure may account for the different sensitivity to drugs of the two animal species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1912
    Keywords: Capsaicin ; Rat duodenum ; Non-adrenergic non-cholinergic ; ATP ; Calcitonin gene-related peptide ; Denervation experiments ; Chemogenic efferent responses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Capsaicin produces a concentration-related relaxation of the longitudinal muscle of the rat isolated duodenum in the presence of atropine (3 μM) plus guanethidine (3 μM). This effect of capsaicin is partly (about 40%) antagonized by tetrodotoxin (1.0 μM) suggesting the involvement of intramural non-adrenergic non-cholinergic (NANC) neurons. 2. The capsaicin-induced relaxations are unaffected by previous bilateral vagotomy or removal of the inferior mesenteric ganglion but are completely prevented by removal of the coeliac ganglia plus the superior mesenteric ganglion (72 h before). Acute duodenal denervation did not modify the response to capsaicin. 3. Unlike various neuropeptides (substance P, kassinin, neurokinin A, cholecystokinin octapeptide, somatostatin, vasoactive intestinal polypeptide) only the calcitonin gene-related peptide (CGRP) closely mimicked, both qualitatively and quantitatively, the capsaicin-induced relaxations. The CGRP-induced relaxations were unaffected by hexamethonium and partly reduced (about 40%) by tetrodotoxin. 4. In preparations desensitized to adenosine-triphosphate (ATP) a putative NANC inhibitory neurotransmitter of the rat duodenum, the effects of CGRP were reduced (about 30%) as compared to controls. After ATP-desensitization tetrodotoxin did not produce any further reduction of the CGRP-induced relaxations suggesting the involvement of endogenous ATP in the neuronal (tetrodotoxin-sensitive) component of the CGRP-induced relaxations. 5. Either ATP-or CGRP-desensitization reduced (about 50 and 65% respectively) the amplitude of the capsaicin-induced relaxations. In the presence of both ATP and CGRP capsaicin did not affect motor activity of the rat isolated duodenum indicating a complete desensitization of the effect of endogenously released substance(s). 6. These findings indicate that the capsaicin-induced relaxations of the rat isolated duodenum are due to activation of a neural mechanism of extrinsic origin, presumably primary afferent fibers. CGRP is a likely candidate for the role of neuropeptide released by capsaicin in this preparation. Endogenous CGRP may produce NANC relaxation both directly and by releasing the endogenous NANC neurotransmitter(s).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1912
    Keywords: Capsaicin ; Micturition reflex ; Substance ; Plasma extravasation ; Species related variations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The effect of capsaicin on bladder motility in vivo (urethane anaesthesia) and in vitro, plasma extravasation (Evans blue leakage technique) and content of substance P-like immunoreactivity (SP-LI) of the urinary bladder was investigated in various mammalian species. 2. Systemic capsaicin desensitization (rat and hamster, 50 mg/kg s.c. 4 days before; guinea-pig 55 mg/kg s. c. 4–7 days before) increased bladder capacity in rats and guinea-pigs and reduced voiding efficiency in guinea-pigs. All other urodynamic parameters were unaffected in both rats, guinea-pigs and hamsters. 3. Reflex bladder voiding was abolished by spinal cord transection in anaesthetized rats and hamsters. On the other hand, hexamethonium-(20 mg/kg i.v.)sensitive voiding contractions were obtained in response to saline filling 45 min from cord transection in guinea-pigs, indicating a profound interspecies variation in the basic organization of micturition. 4. Exposure to capsaicin (1 μM) produced a contraction of the isolated bladder from rats, guinea-pigs (dome) and mice. Capsaicin produced only a slight contractile response in the guinea-pig bladder base. The motor response to capsaicin of the rat, guinea-pig and mouse bladder exhibited marked desensitization, suggesting a specific effect on sensory nerves. On the other hand, capsaicin (1 μM) produced a slight relaxation of the hamster isolated bladder but this effect was reproducible at 1–2 h intervals, suggesting an unspecific effect. Capsaicin (1–10 μM) did not affect motility of strips from the dome or the base of the rabbit bladder. 5. Intravenously administered capsaicin produced a marked plasma extravasation (Evans blue leakage) in the lower urinary tract of rats, mice and guinea pigs. In rats but not guinea-pigs the reaction in the bladder base was greater than in the dome. In hamsters intravenous capsaicin failed to induce any significant Evans blue leakage in the lower urinary tract. 6. SP-LI was detected in the lower urinary tract of rats, guinea-pigs, rabbits and mice but not hamsters. Bladder SP-LI was depleted by systemic capsaicin desensitization in rats, guinea-pigs and mice. Reverse phase HPLC indicated that all the immunoreactive material co-eluted with authentic substance P or its oxidized form. 7. These findings indicate that noticeable species-related differences exist with regard to the functions mediated by the Capsaicin-sensitive neurons in the urinary bladder.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1912
    Keywords: Urinary bladder ; Visceral pain ; Xylene ; Capsaicin ; Sensory nerves ; Sensory neuropeptides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Intravesical instillation of xylene (10–100%, dissolved in silicone oil) through a catheter implanted into the bladder of conscious, freely-moving rats produced behavioural effects (licking of lower abdomen or perineal region) suggestive of intense visceral pain, not mimicked by topical application of the irritant on the urethral outlet. 2. The xylene-induced visceral pain was prevented, to the same extent, by systemic desensitization to capsaicin (50 mg/kg s.c.) performed in either adult or newborn rats, as well as by extrinsic bladder denervation (pelvic ganglionectomy), thus indicating the involvement of primary afferents in the bladder wall. 3. Other behavioural responses induced by xylene instillation into the bladder (hind limb hyperextension, grooming) were not affected by systemic capsaicin desensitization in either adult or newborn rats, but were abolished by bladder denervation. 4. Systemic capsaicin desensitization produced an almost complete depletion of substance P-, neurokinin A-like and calcitonin gene-related peptide-like immunoreactivity in the rat urinary bladder. 5. These findings indicate that, in addition to their role in activating reflex micturition, the neuropeptides-containing capsaicin-sensitive sensory nerves of the rat bladder are involved in chemogenic visceral pain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 338 (1988), S. 411-416 
    ISSN: 1432-1912
    Keywords: Capsaicin ; Primary afferent neurons ; Cardiovascular system ; Urinary bladder ; Spinal cord
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In urethane-anesthetized rats with an intact spinal cord, application of capsaicin on the outer surface of the urinary bladder produced a transient bradycardia, hypotension and negative cardiac inotropism which were neither prevented by i. v. atropine (0.5 mg/kg) nor by cervical vagotomy. In acute spinal rats (C2-C3) application of capsaicin (0.2 and 2 pg in 25 pl) on the urinary bladder induced a transient hypertension, tachycardia and positive cardiac inotropism. A second application (30 min later) induced minor cardiovascular effects, expecially with the higher dose, indicating desensitization. All cardiovascular responses to topical capsaicin were abolished by systemic capsaicin desensitization (50 mg/kg s. c., 4 days before). The excitatory cardiovascular response to capsaicin in acute spinal rats was markedly reduced by bilateral section of pelvic but not hypogastric nerves. Further, it was abolished by pretreatment with hexamethonium (20 mg/kg i.v.) or reserpine (5 mg/kg i. p., 2 days before) and reduced, at various extent for the different components, by phentolamine (0.5 mg/kg i. v.) or propranolol (1 mg/kg). In rats with pelvic and hypogastric nerves intact, section of the cord at a level (T12-L1), just above the medullary segments which receive primary afferent input from the bladder (L6-S1), abolished the excitatory cardiovascular response to application of capsaicin on the bladder. In spinal rats (C2-C3) rapid distension of the urinary bladder with saline produced transient tachycardia, hypertension and positive cardiac inotropism similar to that evoked by capsaicin. These responses were not observed in rats systemically pretreated with capsaicin. These findings indicate that certain bladder afferents which are susceptible to capsaicin desensitization in adult rats activate a spinal reflex having excitatory influence on cardiovascular function. This response is apparently mediated by spinal centers located above the site of entry of bladder pelvic afferents into the cord and most likely involves excitation of preganglionic sympathetic neurons in the spinal cord.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1912
    Keywords: Capsaicin ; Urinary tract ; “Sensory efferent” function of capsaicin sensitive nerves ; Neurogenic inflammation ; Tachykinins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The effects of capsaicin, substance P (SP) and neurokinin A (NKA) on motor activity and vascular permeability was investigated in the rat lower urinary tract (bladder dome and neck, proximal urethra and ureters). 2. Capsaicin produced contractions of the rat bladder dome and neck and of the proximal urethra in vitro, which were unaffected by tetrodotoxin and abolished by ganglionectomy. SP and NKA were almost equipotent in producing a contraction of the rat isolated bladder dome or neck and urethra. However, the maximal response to NKA was about twice that of SP on the urethra and bladder neck. 3. Capsaicin did not affect motility of the unstimulated rat isolated ureter, while NKA or SP activated rhythmic contractions, NKA being about 850 times more potent than SP. Either capsaicin or field stimulation produced a transient inhibition of the NKA-activated rhythmic contractions of the rat isolated ureter which was prevented by capsaicin-desensitization. 4. The capsaicin-(1 μM) or field stimulation-induced inhibition of NKA-activated rhythmic contractions of the rat isolated ureter were unaffected by removal of pelvic ganglia but abolished by cold storage (72 h at 4°C). 5. Intravenous capsaicin induced an inflammatory response (Evans blue leakage) in the bladder, proximal urethra and ureters in vivo. Plasma extravasation was greater in the ureters, urethra and bladder neck than in the dome. SP, NKA and histamine produced a dose-dependent dye leakage in all segments of the rat urinary tract, the response being slightly greater in the bladder neck than in the dome. 6. The capsaicin-induced inflammatory response was abolished by systemic capsaicin-desensitization and reduced, to a variable extent, by pelvic ganglionectomy, in the various tissues examined. Topical application of tetrodotoxin on the bladder dome failed to affect the capsaicin-induced plasma extravasation in the urinary bladder. 7. These findings indicate that chemoceptive, capsaicin-sensitive nerves are present throughout the whole rat lower urinary tract and their activation determines a variety of visceromotor responses and an increase of vascular permeability. In various instances the response to capsaicin may be explained by the action of tachykinins but some effects may involve other sensory neuropeptides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1912
    Keywords: Skin ; Capsaicin ; Sensory neuropeptides ; Trophic role of sensory nerves ; Tachykinins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The time course and regional distribution of ‘spontaneous’ cutaneous lesions in rats desensitized to capsaicin as newborns was correlated to behavioural observations and regional distribution of substance P-like immunoreactivity (SP-LI) and tachykinin-like immunoreactivity (TK-LI) in various skin areas. 2. ‘Spontaneous’ skin lesions in the form of wounds, scabs and areas of alopecia were observed in 80–90% of rats desensitized to capsaicin. No major sex-related differences were observed with regard to incidence and distribution of the lesions with the possible exception of a lesser tendency to bilateral lesions in female rats. 3. ‘Spontaneous’ skin lesions were almost restricted to the head: the areas most frequently affected were snouts, periocular and retroauricular regions and ventral area of the neck. 4. No major differences were observed between capsaicin- or vehicle-treated animals in spontaneous or novelty-induced grooming as well as in open-field gross behaviour. Likewise, no differences were observed in the mouse-killing behaviour. 5. Both SP-LI and TK-LI in various skin areas were significantly reduced by systemic capsaicin pretreatment. The rank order of various skin areas for SP-LI or TK-LI levels was: snouts 〉 thigh 〉 neck 〉 abdomen ≃ retroauricular region. 6. Intradermal injection of Arg-neurokinin B, a potent and water soluble derivative of neurokinin B, produced a similar plasma extravasation (Evans blue leakage technique) in the skin of vehicle- or capsaicin-pretreated rats. 7. In capsaicin-desensitized rats fur regrowth (measured at abdominal level, 28 days after shaving) was significantly less than in vehicle-treated animals. 8. The s. c. injection of 1 N HCl in the dorsal thoracic region (an area devoid of ‘spontaneous’ lesions in capsaicin-desensitized animals) produced cutaneous ulcers whose area and depth were greater in capsaicin- than vehicle-treated rats. 9. These findings are consistent with the hypothesis that capsaicin-sensitive nerves play a trophic role in the rat skin and contribute to its ability to react and repair injuries. The most consistent explanation for the restricted localization of ‘spontaneous’ skin lesions to the head seems to be that ‘normal’ injurious factors (such as grooming) operate on a distrophic skin to induce lesions by repeated microtrauma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...