Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The special-purpose computer GRAPE-2A accelerates the calculation of pairwise interactions in many-body systems. This computer is a back-end processor connected to a host computer through a Versa Module Europe (VME) bus. GRAPE-2A receives coordinates and other physical data for particles from the host and then calculates the pairwise interactions. The host then integrates an equation of motion by using these interactions. We did molecular dynamics simulations for two systems of liquid water: System 1 (1000 molecules), and System 2 (1728 molecules). The time spent for one step of molecular dynamics was 3.9 s (System l), and 10.2 s (System 2). The larger the molecular system, the higher the performance. The speed of GRAPE-2A did not depend on the formula describing the pairwise interaction. The cost performance was about 20 times better than that of the fastest workstations available today, and GRAPE-2A cost only $22,000. © 1994 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Special-purpose parallel machines that are plugged into a workstation to accelerate molecular dynamics (MD) simulations are attracting a considerable amount of interest. These machines comprise scalable homogeneous multiprocessors for calculating nonbonded forces (Coulombic and van der Waals forces), which consume more than 99% of the central processing unit (CPU) time in standard MD simulations. Each processor element in the machine has a pipeline architecture to calculate the total nonbonded force exerted on a particle by all of the other particles using information regarding the coordinates, the electric charge, and the species of each particle broadcast by the host computer. The processor then sends the calculated force back to the host computer. This article addresses the precision of the calculated nonbonded forces in the design of a processor LSI with minimal complexity. The precision of the arithmetic inside the processor that is required to calculate forces for MD simulations using Verlet's procedure was critically evaluated. Forward and backward error analysis, coupled with numerical MD experiments on one-dimensional systems, was performed, and the following results were obtained: (1) Each element of the position vector which the processor receives from the host computer should have a precision of at least 25 bits; and (2) the pairwise forces should be calculated using floating point numbers with at least 29 bits of mantissa in the processor. Calculation of a pairwise force, which involves second-order polynomial interpolation using a table-driven algorithm, requires a key which contains a duplicate of at least 11 most significant bits of mantissa of the squared pairwise distance. The final result was that (3) the total force that acts on a particle, which is obtained by summing the forces exerted by all of the other particles, should be calculated using an accumulator that has a mantissa of at least 48 bits. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 20 (1994), S. 139-148 
    ISSN: 0887-3585
    Keywords: hardware ; molecular dynamics ; simulation ; special-purpose computer ; supercomputing ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Molecular dynamics simulations have been extensively used in research of proteins. Since these simulations are quite computer intensive, their acceleration is of main interest of the research. In molecular dynamics simulations, almost all computing time is consumed in calculating the forces between particles, e.g., Coulomb and van der Waals forces. We have designed and built GRAPE-2A (GRAvity PipE 2A), a special-purpose computer for use in simulations of classical many-body systems. GRAPE-2A calculates forces exerted on a particle from the other particles. GRAPE-2A can calculate force of an arbitrary functional form of a central force. The host computer, which is connected to GRAPE-2A through the VME bus, performs other calculations such as time integration. The peak speed of GRAPE-2A is 180 Mflops. We can also stimulate systems with periodic boundary conditions by the Ewald method, using GRAPE-2A and another special-purpose computer, WINE (Wave space INtegrator for the Ewald method). © 1994 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...