Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 98 (1994), S. 13067-13076 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 1757-1770 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: This study investigates the differences between the predictions of various properties of rigid and flexible simple point charge water models at supercritical conditions. Molecular dynamics simulations were conducted for supercritical water in a temperature range of 773-1073 K and densities in the range 115-659 kg/m3. We present thermodynamic data, pair correlation functions, self-diffusivity, power spectra, dielectric constants, and variaous measures of hydrogen bonding at different state conditions. The flexible water model performs better in predicting the pressures along the supercritical isotherms simulated. Agreement between experimental and calculated dielectric constants is superior for the flexible water model, particularly at high densities. The flexible model exhibits a greater degree of hydrogen bonding and more persistent hydrogen bonds than does the rigid model. The structural features of supercritical water at high densities are identical for the two water models. At low densities, however, the flexible potential exhibits pair correlation functions with enhanced peaks. Inclusion of flexibility in the potential model does not result in a significant shift in the position of the rotational/librational peak in the power spectrum. The self-diffusivities obtained from the simulations are within the accuracy of the experimental values for both the rigid and flexible models. On balance the inclusion of flexibility improves agreement with the properties of real supercritical water while incurring little or no additional computational burden. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 1287-1299 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The fugacity coefficients of the hydroperoxyl radical in supercritical water are estimated through molecular simulations. A potential function for the radical is first derived from ab initio self-consistent field molecular orbital calculations at the unrestricted Hartree-Fock level and from data in the literature. Molecular dynamics simulations of the hydroperoxyl radical are then performed in supercritical water and the fugacity coefficient of the radical is calculated by the free-energy perturbation method using the dynamic coupling parameter window-modification technique. The values of the fugacity coefficients at 773 K differ from unity. This methodology facilitates the incorporation of thermodynamic nonidealities in mechanism-based kinetic models for free-radical reactions in supercritical water.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...