Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 20 (1987), S. 2362-2368 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 26 (1993), S. 1019-1026 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 28 (1993), S. 5161-5168 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Fatigue tests were conducted on three linear poly (methyl methacrylate) (PMMA) resins having weight average molecular weights (M w) of 82 000, 205 000 and 390000 and on a fourth, cross-linked sample (M c=3337 g mol−1). Fatigue threshold test conditions included a constant load ratio (R c=0.1) and a constant maximum stress intensity level (K max c =0.52 MPa m1/2). TheR c=0.1 test results demonstrated that fatigue resistance increased with increasingM w, and that the cross-linked sample possessed a higher fatigue threshold than the linear Iow-Mw material. However, the K max c test results revealed the opposite trend, with fatigue resistance decreasing with increasingM w and chemical crosslinking. The marked change in relative fatigue resistance of the PMMA resins investigated under high mean stress conditions is believed to be a consequence of the competition between two molecular deformation mechanisms: chain scission and chain slippage. The presumed shift in operative mechanism as a function of theR level is reflected in differences noted on the fracture surfaces of the PMMA resins studied. Discontinuous growth band formation, which is indicative of large amounts of chain slippage, is favoured by lowM w and lowR ratios, but disappears in association with high-M w and highR-ratio test conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 30 (1992), S. 1311-1319 
    ISSN: 0887-6266
    Keywords: polystyrene, chain scission in fracture of ; fracture of glassy polymers, energy consuming micromechanisms ; chain scission mechanism in fracture of polystyrene ; glassy polymers, chain scission and fracture of ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The number of chain scissions per unit area that occur during the fracture of partially annealed latex films from Mn ≃ 180,000 g/mol polystyrene particles of about 275 Å radius were measured and correlated to annealing times. A curve with four regimes was found. At short annealing times the curve is nearly flat, in what is called the chain pull-out regime. In the second regime, the number of chains broken per unit area increases with a 0.8 power of annealing time as entanglement of the diffusing polymer chains increases in neighboring host particles. This is in good agreement with Wool's theory which predicts a 0.75 power dependence. Then, after reaching a peak, the number of scissions decreases in the third regime, indicating a change in fracture mechanism. The number of chain scissions increases again in the fourth regime, as final healing of the film interface takes place. Fracture surface analysis reveals a rough surface for short annealing times and a smooth surface for longer annealing times. The number of polymer chain scissions per unit area of fracture surface showed no dependence on initial molecular weights for t ≫ τr where t and τr are annealing and relaxation times, respectively. The number of chain bridges crossing a unit area of interface was suggested as the basic molecular property. © 1992 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 1 (1990), S. 263-273 
    ISSN: 1042-7147
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Small-angle neutron scattering studies have been used to clarify several aspects of the internal structure of latexes and subsequent film formation modes. This paper reviews work both around the world and at Lehigh University on those subjects. Two points have been made clear: (1) The appearance of core-shell phenomena in latexes depends on the size of the polymer chain to that of the latex particle; the phenomenon is most marked when the radius of gyration of the chain is about one fifth as big as the latex radius. (2) Strength build-up during film formation depends on the extent of interdiffusion of the chains. For moderate molecular weights, interdiffusion distances of one radius of gyration yield maximum strength. For both moderate (250,000 g/mol) and high (2,000,000 g/mol) molecular weights, full strength was achieved in two hour's annealing time at 144°C.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...