Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0843
    Keywords: Key words GST inhibitor ; Potentiate ; Drug sensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Novel glutathione (GSH) analogs, previously shown to inhibit glutathione S-transferase (GST) activity at about 1 μM in vitro, were tested for their ability to potentiate the killing of cultured tumor cells by chemotherapeutic drugs. When tested at doses up to 200 μM, the analogs were neither toxic nor capable of potentiating drug toxicity unless the diethyl ester (DEE) form was used for treatment of the cells. HPLC analysis revealed rapid internalization of the DEE and intracellular conversion to a monoethyl ester form that accumulated in the cell, followed by a more gradual loss of the second ester to generate the active parent form. For the four GSH analogs tested, the ability of the DEE forms to potentiate chlorambucil (CMB) toxicity in HT-29 human colon adenocarcinoma cells strongly correlated with the in vitro ability of the parent form to inhibit recombinant human P1-1. This isozyme is the dominant form of GST present in HT-29 cells. Of the four analog DEEs tested, γ-glutamyl-S-(benzyl)cysteinyl-R(−)-phenyl glycine (TER 117) DEE was the most effective in potentiating CMB toxicity in several cell lines: HT-29, HT4-1 (HT-29 subclone), SKOV-3 ovarian carcinoma, and SK VLB (vinblastine-resistant variant of SKOV-3) cells. γ-Glutamyl-S-(octyl)cysteinyl-glycine (TER 143) DEE potentiated mitomycin C (MTC) toxicity in HT4-1 and SK VLB cells while TER 117 DEE did not. TER 117 DEE enhanced melphalan effects on xenografts of HT4-1 in mice to a similar extent as that achieved with the previously described nonspecific GST inhibitor, ethacrynic acid. Taken together, our results indicate that cell-permeable analogs of GSH can potentiate cytotoxicity of common chemotherapeutic drugs and this effect has a strong positive correlation with the ability of the analogs to inhibit specific GST isozymes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Neural transplantation ; Xenograft ; Fetal pig ; Rat striatum ; Rotational behavior ; Tyrosine hydroxylase immunohistochemistry ; Parkinson's disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A suspension of cells from embryonic day 21 fetal pig ventral mesencephalon was transplanted into the striatum of 20 immunosuppressed rats with 6-hydroxydopamine-induced lesions of the nigrostriatal dopamine pathway. Of these rats, 15 showed reduction of amphetamine-induced ipsilateral rotation by 9 weeks and complete reversal of rotation by 14–17 weeks. Animals maintained stable reversal of rotations (contralateral direction) until cessation of Cyclosporin A (CyA) treatment at 15–20 weeks. Within 4–9 weeks after CyA removal, these rats showed exclusively ipsilateral rotations during behavioral testing which were comparable to pre-transplant levels, suggesting that the grafts were rejected upon cessation of CyA treatment. Rats were sacrificed and tyrosine hydroxylase (TH) immunohistochemistry was performed at several time points, both on and off CyA, to examine a possible correlation between the degree of rotational behavior and the number of TH- positive surviving grafted cells. Staining showed large numbers (230–12,329) of TH-positive surviving cells in animals displaying a high degree of rotational correction (1.6 to -9.6 net ipsilateral rotations/min) after cessation of CyA treatment. Two control groups, those transplanted with nonneuronal cells from the pig ventral mesencephalon (n=5) and those receiving only daily CyA injections (n=4) showed no significant reduction of net ipsilateral rotations throughout the experiment. No TH-positive surviving cells were seen in the one non-neuronal transplant analyzed. This data demonstrates long-term retention of xenografted tissue with immunosuppression and its concomitant restoration of normal motor behavior in the rat model of Parkinson's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...