Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 64 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The organic molecule K-252a promoted cell survival, neurite outgrowth, and increased choline acetyltransferase (ChAT) activity in rat embryonic striatal and basal forebrain cultures in a concentration-dependent manner. A two- to threefold increase in survival was observed at 75 nM K-252a in both systems. A single application of K-252a at culture initiation prevented substantial (〉60%) cell death that otherwise occurred after 4 days in striatal or basal forebrain cultures. A 5-h exposure of striatal or basal forebrain cells to K-252a, followed by its removal, resulted in survival equivalent to that observed in cultures continually maintained in its presence. This is in contrast to results found with a 5-h exposure of basal forebrain cultures to nerve growth factor (NGF). Acute exposure of basal forebrain cultures to K-252a, but not to NGF, increased ChAT activity, indicating that NGF was required the entire culture period for maximum activity. Striatal cholinergic and GABAergic neurons were among the neurons rescued by K-252a. Of the protein growth factors tested in striatal cultures (ciliary neurotrophic factor, neurotrophin-3, NGF, brain-derived neurotrophic factor, interleukin-2, basic fibroblast growth factor), only brain-derived neurotrophic factor promoted survival. The enhancement of survival and ChAT activity of basal forebrain and striatal neurons by K-252a defines additional populations of neurons in which survival and/or differentiation is regulated by a K-252a-responsive mechanism. The above results expand the potential therapeutic targets for these molecules for the treatment of neurodegenerative diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Neural transplantation ; Xenograft ; Fetal pig ; Rat striatum ; Rotational behavior ; Tyrosine hydroxylase immunohistochemistry ; Parkinson's disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A suspension of cells from embryonic day 21 fetal pig ventral mesencephalon was transplanted into the striatum of 20 immunosuppressed rats with 6-hydroxydopamine-induced lesions of the nigrostriatal dopamine pathway. Of these rats, 15 showed reduction of amphetamine-induced ipsilateral rotation by 9 weeks and complete reversal of rotation by 14–17 weeks. Animals maintained stable reversal of rotations (contralateral direction) until cessation of Cyclosporin A (CyA) treatment at 15–20 weeks. Within 4–9 weeks after CyA removal, these rats showed exclusively ipsilateral rotations during behavioral testing which were comparable to pre-transplant levels, suggesting that the grafts were rejected upon cessation of CyA treatment. Rats were sacrificed and tyrosine hydroxylase (TH) immunohistochemistry was performed at several time points, both on and off CyA, to examine a possible correlation between the degree of rotational behavior and the number of TH- positive surviving grafted cells. Staining showed large numbers (230–12,329) of TH-positive surviving cells in animals displaying a high degree of rotational correction (1.6 to -9.6 net ipsilateral rotations/min) after cessation of CyA treatment. Two control groups, those transplanted with nonneuronal cells from the pig ventral mesencephalon (n=5) and those receiving only daily CyA injections (n=4) showed no significant reduction of net ipsilateral rotations throughout the experiment. No TH-positive surviving cells were seen in the one non-neuronal transplant analyzed. This data demonstrates long-term retention of xenografted tissue with immunosuppression and its concomitant restoration of normal motor behavior in the rat model of Parkinson's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...