Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 27 (1992), S. 5811-5817 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Copper oxides have been formed to improve the adhesive strength of copper/epoxy joints. Initial adhesive strength and durability of copper/epoxy joints were compared depending upon the type of oxides, black or red oxide. Although the initial adhesive strength of black oxide treated joints was worse than that of red oxide treated joints, the durability in acidic environment was better. In order to improve the durability of red oxide treated joints, 5-amino-indazole was applied to inhibit the corrosion of oxide layer in acidic medium. With the treatment of 5-amino-indazole, initial adhesive strength was increased by 50%, and durability was improved. The loci of failure for oxide treated joints were investigated with scanning electron microscope and X-ray photoelectron spectroscopy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 29 (1994), S. 1854-1866 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Unsaturated polyester (UPE) has been toughened by incorporating novel liquid polyurethane (PU) rubber. PU rubber was synthesized using toluene di-isocyanate and polyols such as poly (propylene glycol) and poly (tetramethylene ether) glycoi, whose molecular weights vary from 650 to 4000. Particle size was varied from 0.1 to 3 μm by changing the polyol and the molecular weight of PU rubber, and the effects of particle size on the fracture toughness of PU rubber-modified UPE were investigated. Hydroxyl terminated PU rubber (HTPU) and isocyanate terminated PU rubber (ITPU) were used to study the effects of rubber-matrix adhesion. The toughening mechanisms observed by scanning electron microscope are debonding between rubber and matrix in HTPU-modified UPE, and cavitation in the rubber particle in ITPU-modified UPE. However, shear bands were not observed as UPE is a highly cross-linked thermoset with very short chain length between the cross-links. A 1.9-times increase in fracture toughness of UPE was achieved with the formation of cavitated particles. In order to measure the process zone size at the crack tip, the thin sections of tested double-notched four-point bending specimens were examined by optical microscope.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 11 (1992), S. 1197-1200 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 16 (1997), S. 1027-1029 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Abstracts are not published in this journal
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1261-1273 
    ISSN: 0887-6266
    Keywords: rod-like polyimide ; poly(amic acid) precursor ; imidization ; residual stress ; intrinsic stress ; thermal stress ; refractive index ; birefringence ; molecular in-plane orientation ; molecular ordering ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A soluble poly(amic acid) precursor solution of fully rod-like poly(p-phenylene pyromellitimide) (PMDA-PDA) was spin cast on silicon substrates, followed by soft bake at 80-185°C and subsequent thermal imidization at various conditions over 185-400°C in nitrogen atmosphere to be converted to the polyimide in films. Residual stress generated at the interface was measured in situ during imidization. In addition, the imidized films were characterized in the aspect of polymer chain orientation and ordering by prism coupling and X-ray diffraction. The soft-baked precursor film revealed a residual stress of 16-28 MPa at room temperature, depending on the soft bake condition: higher temperature and longer time in the soft bake gave higher residual stress. The stress variation in the soft-baked precursor film was not significantly reflected in the final stress in the resultant polyimide film. However, the residual stress in the polyimide film varied sensitively with variations in imidization process parameters, such as imidization temperature, imidization steps, heating rate, and film thickness. The polyimide film exhibited a wide range of residual stress, -7 MPa to 8 MPa at room temperature, depending on the imidization condition. Both rapid imidization and low-temperature imidization generated high stress in the tension mode in the polyimide film, whereas slow imidization as well as high temperature imidization gave high stress in the compression mode. Thus, a moderate imidization condition, a single- or two-step imidization at 300°C for 2 h with a heating rate of 〈 10 K/min was proposed to give a relatively low stress in the polyimide film of 〈 10 μm thickness. However, once a precursor film was thermally imidized at a chosen process condition, the residual stress-temperature profile was insensitive to variations in the cooling process. All the films imidized were optically anisotropic, regardless of the imidization history, indicating that rod-like PMDA-PDA polyimide chains were preferentially aligned in the film plane. However, its degree of in-plane chain orientation varied on the imidization history. It is directly correlated to the residual stress in the film, which is an in-plane characteristic. For films with residual stress in the tension mode, higher stress films exhibited lower out-of-plane birefringence, that is, lower in-plane chain orienta-tion. In contrast, in the compression mode, higher stress films showed higher in-plane chain orientation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1261-1273, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 47 (1993), S. 305-322 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The dynamic mechanical properties of polymeric composites composed of crosslinked poly(n-butyl methacrylate) continuous-phase and crosslinked polystyrene dispersed phase with poly(n-butyl methacrylate) occlusion have been examined. The composite samples were prepared by mixing and swelling of the crosslinked polystyrene particles obtained by emulsifier-free emulsion polymerization, with n-butyl methacrylate and crosslinker, then photopolymerizing at the desired temperature. The composite microstructure was varied by either changing the crosslink density of polystyrene, and temperature of swelling and polymerization, or using different sizes and contents of polystyrene particles. The tan δ peak positions of composite samples are found to be dependent on morphological characteristics as well as the properties of the dispersed phase while the peak height seems to be dependent on the effective volume of dispersed phase composed of polystyrene and poly(n-butyl methacrylate) occlusions. Special attention has been paid to the comparison among composite, homonetworks, and bulk IPN samples that are expected to have the identical structure with the complex dispersed phase of the composite samples. © 1993 John Wiley & Sons, Inc.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...