Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1436-2449
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Summary A new thermally stable, high strength and high modulus aromatic polyamide film was obtained via the formation of the molecular composite of p-PDCBTA and P-LCl. The two polymers exhibited good miscibility identified with the measurement of dynamic mechanical property and FTIR spectra. By the combination of drawing by 40% and subsequent heat treatment, the tensile property of the composite film could be achieved to the strength of 450 MPa and the modulus of 24 GPa, which were sustainable upto 400 °C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 60 (1996), S. 865-870 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Electrically conducting arachidic acid/polypyrrole (PPy) composite films were prepared by exposing the arachidic acid LB films containing ferric chloride to pyrrole vapor. The optimum conditions to deposit matrix LB film were the subphase temperature of 23-25°C, pH of 6.0 and ferric chloride concentration of 5.0 × 10-5 M. The formation of PPy in the arachidic acid matrix LB films was confirmed by UV-visible spectra, FTIR spectra, and scanning electron micrographs. The average thickness of the composite LB films prepared at 0°C was 1525 Å. The composite films prepared at lower temperatures have more uniform surface and exhibit higher electrical conductivity than the films prepared at higher temperatures do. The in-plain conductivity and the transverse conductivity of the composite film were 10-3-10-2 S/cm and 10-6S/cm, respectively, and, thus, the conductivity anisotropy was about 103 © 1996 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1637-1645 
    ISSN: 0887-6266
    Keywords: ester interchange reaction ; Monte Carlo method ; copolymerization ; degree of randomness ; miscible polyester blend ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The effects of reaction variables on the degree of randomness in copolymers formed by ester interchange reaction in miscible polyester melt blends were systematically investigated using a Monte Carlo method. Three reaction variables such as the molecular weight difference between two component polymers, the blend ratio, and the reaction ratio of end attack to bond flip, were particularly considered on the cubic lattice model. Ester interchange reactions were assumed to take place during reptational chain motions. It was found that the copolymerization was dependent upon the molecular weight difference and reaction ratio: As the molecular weight difference becomes smaller and when both end attack and bond flip reactions are involved simultaneously, the copolymerization is accelerated. However, the blend ratio does not affect the copolymerization process. This result is discussed in relation to the polymer chain conformation for the ester interchange reaction. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1637-1645, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...