Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of nonlinear science 1 (1991), S. 17-70 
    ISSN: 1432-1467
    Keywords: nonlinear partial differential equations ; minimizing sequences ; loss of ellipticity ; fine structure ; phase transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Physics
    Notes: Summary We investigate models for the dynamical behavior of mechanical systems that dissipate energy as timet increases. We focus on models whose underlying potential energy functions do not attain a minimum, possessing minimizing sequences with finer and finer structure that converge weakly to nonminimizing states. In Model 1 the evolution is governed by a nonlinear partial differential equation closely related to that of one-dimensional viscoelasticity, the underlying static problem being of mixed type. In Model 2 the equation of motion is an integro—partial differential equation obtained from that in Model 1 by an averaging of the nonlinear term; the corresponding potential energy is nonlocal. After establishing global existence and uniqueness results, we consider the longtime behavior of the systems. We find that the two systems differ dramatically. In Model 1, for no solution does the energy tend to its global minimum ast → ∞. In Model 2, however, a large, dense set of solutions realize global minimizing sequences; in this case we are able to characterize, asymptotically, how energy escapes to infinity in wavenumber space in a manner that depends upon the smoothness of initial data. We also briefly discuss a third model that shares the stationary solutions of the second but is a gradient dynamical system. The models were designed to provide insight into the dynamical development of finer and finer microstructure that is observed in certain material phase transformations. They are also of interest as examples of strongly dissipative, infinite-dimensional dynamical systems with infinitely many unstable “modes”, the asymptotic fate of solutions exhibiting in the case of Model 2 an extreme sensitivity with respect to the initial data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archive for rational mechanics and analysis 135 (1996), S. 357-396 
    ISSN: 1432-0673
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Physics
    Notes: Abstract A method is presented for deriving unconstrained Hamiltonian systems of partial differential equations equivalent to given constrained Lagrangian systems. The method is applied to the theory of planar, finite-amplitude motions of inextensible and unshearable elastic rods. The constraints of inextensibility and unshearability become integrals of motion in the Hamiltonian formulation. It is known that in the theory of uniform, inextensible, unshearable rods of infinite length there arise solitary-wave solutions with the property that each profile can move at arbitrary speed. The Hamiltonian formulation is exploited to analyze the stability properties of these solitary waves. The wave profiles are first characterized as critical points of an appropriate time-invariant functional. It is then shown that for a certain range of wave speeds the solitary-wave profiles are actually nonisolatedminimizers of the functional, a fact with implications for nonlinear stability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...