Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 287-288 (Aug. 1998), p. 269-270 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0630
    Keywords: PACS: 77.55; 07.07.D; 92.60.J
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract. The humidity sensitive properties of carbon nitride (CNx) films deposited by two methods, inductively coupled plasma chemical vapour deposition utilizing transport reactions and pulsed laser deposition combined with an rf discharge, have been investigated. For this purpose capacitance humidity sensors with a CNx detecting element have been fabricated and tested. Fast and significant responses toward moisture are registered by the changes of the electrical parameters. The CNx films sensing mechanism has been discussed. The results obtained show unambiguously that CNx films appear to be a promising candidate as a humidity sensitive element in up-to-date electronic noses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0630
    Keywords: PACS: 07.10.L; 61.46; 78.30.F
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract. Cubic boron nitride thin films have been ion-beam-assisted deposited on silicon cantilever structures and subsequently back-etched in order to study the stress evolution and finally the growth mechanisms. After each sputtering step, the film stress, the remaining thickness, and the IR data were examined. In this way, the layered sequence of cBN on top of a hBN base layer, influencing the development of the intrinsic film stress, could be studied in detail. The observed stress distribution can be divided into three regions. First, a non-cubic base layer with a constant stress value is formed, followed by a linear increase in the stress after cBN nucleation as a result of the coalescence of cBN nanocrystals. Finally, the stress reaches a second plateau characteristic of the cBN top layer. In addition, the layered sequence was verified by the evolution of the FTIR spectra. Furthermore, the fraction of the sp2-bonded material of the cBN top layer was determined from the IR data. For various deposition conditions, a linear relationship between the stress of the nanocrystalline cBN top layer and the amount of sp3-bonded material was observed. From this, it can be concluded that stress relaxation occurs at the sp2-bonded grain boundary material. No evidence for stress relaxation after cBN nucleation was found.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0630
    Keywords: PACS: 81.15.Gh; 68.55.-a
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract. Thin films of carbon nitride were prepared by low-power inductively coupled plasma chemical vapor deposition from a solid carbon source by utilizing transport reactions. The maximum deposition rate achieved was 10 nm/min and depended mainly on the substrate position in the reactor. The nitrogen fraction in the films was not so sensitive to the process parameters and was at about 0.5 for all experiments as measured by Auger electron spectroscopy (AES) and elastic recoil detection (ERD) analysis. The chemical bonding structure studied by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) showed the presence of triple, double and single bonds between carbon and nitrogen atoms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...