Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0992-7689
    Keywords: Magnetospheric physics (auroral phenomena; magnetopause, cusp and boundary layers; magnetosphere - ionosphere interaction)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The CUTLASS Finland radar has been run in a two-beam special scan mode, which offered excellent temporal and spatial information on the flows in the high-latitude ionosphere. A detailed study of one day of this data revealed a convection reversal boundary (CRB) in the CUTLASS field of view (f.o.v) on the dayside, the direction of plasma flow either side of the boundary being typical of a dawn-cell convection pattern. Poleward of the CRB a number of pulsed transients are observed, seemingly moving away from the radar. These transients are identified here as the ionospheric signature of flux transfer events (FTEs). Equatorward of the CRB continuous backscatter was observed, believed to be due to the return flow on closed field lines. The two-beam scan offered a new and innovative opportunity to determine the size and velocity of the ionospheric signatures associated with flux transfer events and the related plasma flow pattern. The transient signature was found to have an azimuthal extent of 1900 ± 900 km and an poleward extent of ∼250 km. The motion of the transient features was in a predominantly westward azimuthal direction, at a velocity of 7.5 ± 3 km.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0992-7689
    Keywords: Interplanetary physics (ionosphere-magnetosphere interaction) Magnetospheric physics (magnetopause, cusp, and boundary layers; solar wind-magnetosphere interactions)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Observations of a flux transfer event (FTE) have been made simultaneously by the Equator-S spacecraft near the dayside magnetopause whilst corresponding transient plasma flows were seen in the near-conjugate polar ionosphere by the CUTLASS Finland HF radar. Prior to the occurrence of the FTE, the magnetometer on the WIND spacecraft ≈226 RE upstream of the Earth in the solar wind detected a southward turning of the interplanetary magnetic field (IMF) which is estimated to have reached the subsolar magnetopause ≈77 min later. Shortly afterwards the Equator-S magnetometer observed a typical bipolar FTE signature in the magnetic field component normal to the magnetopause, just inside the magnetosphere. Almost simultaneously the CUTLASS Finland radar observed a strong transient flow in the F region plasma between 78° and 83° magnetic latitude, near the ionospheric region predicted to map along geomagnetic field lines to the spacecraft. The flow signature (and the data set as a whole) is found to be fully consistent with the view that the FTE was formed by a burst of magnetopause reconnection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 17 (1999), S. 855-867 
    ISSN: 0992-7689
    Keywords: Magnetospheric physics (magnetosphere-ionosphere interactions; plasma convection; solar wind-magnetosphere interactions)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A study has been performed on the occurrence of pulsed ionospheric flows as detected by the CUTLASS Finland HF radar. These flows have been suggested as being created at the ionospheric footprint of newly-reconnected field lines, during episodes of magnetic flux transfer into the terrestrial magnetosphere (flux transfer events or FTEs). Two years of both high-time resolution and normal scan data from the CUTLASS Finland radar have been analysed in order to perform a statistical study of the extent and location of the pulsed ionospheric flows. We note a great similarity between the statistical pattern of the coherent radar observations of pulsed ionospheric flows and the traditional low-altitude satellite identification of the particle signature associated with the cusp/cleft region. However, the coherent scatter radar observations suggest that the merging gap is far wider than that proposed by the Newell and Meng model. The new model for cusp low-altitude particle signatures, proposed by Lockwood and Onsager and Lockwood provides a unified framework to explain the dayside precipitation regimes observed both by the low-altitude satellites and by coherent scatter radar detection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 15 (1997), S. 231-235 
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Previous observations with the Goose Bay HF coherent-scatter radar have revealed structured spectral peaks at ultra-low frequencies. The frequencies of these spectral peaks have been demonstrated to be extremely consistent from day to day. The stability of these spectral peaks can be seen as evidence for the existence of global magneto spheric cavity modes whose resonant frequencies are independent of latitude. Fieldline resonances occur when successive harmonics of the eigenfrequency of the magnetospheric cavity or waveguide match either the first harmonic eigenfrequency of the geomagnetic field lines or higher harmonics of this frequency. Power spectra observed at the SABRE VHF coherent-scatter radar at Wick, Scotland, during night and early morning are revealed to show similarly clearly structured spectral peaks. These spectral peaks are the result of local field-line resonances due to Alfvén waves standing on magnetospheric field lines. A comparison of the spectra observed by the Goose Bay and Wick radars demonstrate that the frequencies of the field-line resonances are, on average, almost identical, despite the different latitudinal ranges covered by the two radars. Possible explanations for the similarity of the signatures on the two radar systems are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0992-7689
    Keywords: Ionosphere (polar ionosphere) ; Magnetospheric physics (magnetosphere-ionosphere interaction; solar wind-magnetosphere interactions)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Using the Equator-S spacecraft and SuperDARN HF radars an extensive survey of bursty reconnection at the magnetopause and associated flows in the polar ionosphere has been conducted. Flux transfer event (FTE) signatures were identified in the Equator-S magnetometer data during periods of magnetopause contact in January and February 1998. Assuming the effects of the FTEs propagate to the polar ionosphere as geomagnetic field-aligned-currents and associated Alfveén-waves, appropriate field mappings to the fields-of-view of SuperDARN radars were performed. The radars observed discrete ionospheric flow channel events (FCEs) of the type previously assumed to be related to pulse reconnection. Such FCEs were associated with ∼80% of the FTEs and the two signatures are shown to be statistically associated with greater than 99% confidence. Exemplary case studies highlight the nature of the ionospheric flows and their relation to the high latitude convection pattern, the association methodology, and the problems caused by instrument limitations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 18 (2000), S. 445-453 
    ISSN: 0992-7689
    Keywords: Magnetospheric physics (magnetosphere-ionosphere interactions plasma convection; solar wind-magnetosphere interactions)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Nearly two years of 2-min resolution data and 7- to 21-s resolution data from the CUTLASS Finland HF radar have undergone Fourier analysis in order to study statistically the occurrence rates and repetition frequencies of pulsed ionospheric flows in the noon-sector high-latitude ionosphere. Pulsed ionospheric flow bursts are believed to be the ionospheric footprint of newly reconnected geomagnetic field lines, which occur during episodes of magnetic flux transfer to the terrestrial magnetosphere - flux transfer events or FTEs. The distribution of pulsed ionospheric flows were found to be well grouped in the radar field of view, and to be in the vicinity of the radar signature of the cusp footprint. Two thirds of the pulsed ionospheric flow intervals included in the statistical study occurred when the interplanetary magnetic field had a southward component, supporting the hypothesis that pulsed ionospheric flows are a reconnection-related phenomenon. The occurrence rate of the pulsed ionospheric flow fluctuation period was independent of the radar scan mode. The statistical results obtained from the radar data are compared to occurrence rates and repetition frequencies of FTEs derived from spacecraft data near the magnetopause reconnection region, and to ground-based optical measurements of poleward moving auroral forms. The distributions obtained by the various instruments in different regions of the magnetosphere were remarkably similar. The radar, therefore, appears to give an unbiased sample of magnetopause activity in its routine observations of the cusp footprint.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0992-7689
    Keywords: Ionosphere (auroral ionosphere) ; Magnetospheric physics (magnetosphere – ionosphere interactions; storms and substorms)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract On August 21st 1998, a sharp southward turning of the IMF, following on from a 20 h period of northward directed magnetic field, resulted in an isolated substorm over northern Scandinavia and Svalbard. A combination of high time resolution and large spatial scale measurements from an array of coherent scatter and incoherent scatter ionospheric radars, ground magnetometers and the Polar UVI imager has allowed the electrodynamics of the impulsive substorm electrojet region during its first few minutes of evolution at the expansion phase onset to be studied in great detail. At the expansion phase onset the substorm onset region is characterised by a strong enhancement of the electron temperature and UV aurora. This poleward expanding auroral structure moves initially at 0.9 km s-1 poleward, finally reaching a latitude of 72.5°. The optical signature expands rapidly westwards at ~6 km s-1, whilst the eastward edge also expands eastward at ~0.6 km s-1. Typical flows of 600 m s-1 and conductances of 2 S were measured before the auroral activation, which rapidly changed to ~100 m s-1 and 10–20 S respectively at activation. The initial flow response to the substorm expansion phase onset is a flow suppression, observed up to some 300 km poleward of the initial region of auroral luminosity, imposed over a time scale of less than 10 s. The high conductivity region of the electrojet acts as an obstacle to the flow, resulting in a region of low-electric field, but also low conductivity poleward of the high-conductivity region. Rapid flows are observed at the edge of the high-conductivity region, and subsequently the high flow region develops, flowing around the expanding auroral feature in a direction determined by the flow pattern prevailing before the substorm intensification. The enhanced electron temperatures associated with the substorm-disturbed region extended some 2° further poleward than the UV auroral signature associated with it.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...