Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 207 (1965), S. 1276-1280 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] MYOGENIC fibrillar insect flight muscle is known to perform considerable work by means of small-amplitude oscillations both in life1 and when glycerinated2. The structure of the muscle is exceptionally well ordered3"4. Electron microscope studies indicate that the ends of the myosin filaments are ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of muscle research and cell motility 2 (1981), S. 45-64 
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary An accurate value for mass/length of thick myofilaments is required to establish a limit for the maximum number of myosin molecules per crossbridge repeat. The mass/length of the crossbridge regions of desalted thick myofilaments from insect flight muscle (Lethocerus andMusca) and rabbit psoas has been measured with a computer-linked STEM by comparing the electron scattering signal per unit length of unstained thick filaments with that from TMV particles in the same image. Filament preparation was aided by limited digestion of myofibrils to remove Z bands using calcium-activated factor (CAF) from rabbit skeletal muscle; SDS gels showed that this selective protease spared myosin and tended to spare paramyosin but removed C protein.Lethocerus filaments prepared by the CAF procedure were 20–25% heavier per unit length than those prepared by conventional (simple) shearing, and retained a clear and generally uniform 14.5 nm crossbridge repeat by negative staining. We have expressed mass/length of thick filaments as myosin equivalents (mol. wt 0.470 × 106) per crown (that is, the 14.5 nm insect or 14.3 nm vertebrate repeat along thick filaments). TMV standards, calculated to weigh 0.1304×106 daltons nm−1 and thus equivalent to 4.02 myosins per 14.5 nm, were uniform to ±3%s.d. for 73 particles after normalizing means for each different image field. After subtracting the known paramyosin content from insect measurements (11% for waterbug, 2% for the housefly), but making no C protein correction to rabbit measurements, the following results were obtained:Lethocerus (all) 4.19±0.50 (243 filaments);Lethocerus (CAF prepns) 4.40±0.44 (145 filaments);Musca (all CAF) 4.14±0.37 (57 filaments); rabbit (all CAF) 2.86±0.34 (75 filaments). These values favour the lowest integral number of myosins per crown among currently competing models of thick filament structure. The rabbit value agrees with several previous estimates, including the STEM measurements of Lamvik, which indicated three rather than four myosins/crown. The insect flight myofilament value of four forces re-evaluation of previous estimates by quantitative gels and quantitative microscopy of whole fibrils which had favoured six myosins/crown.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of muscle research and cell motility 5 (1984), S. 589-590 
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of muscle research and cell motility 5 (1984), S. 3-24 
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Computer-modelling studies have explored how rigor crossbridge interactions in insect flight muscle are affected by using a four-stranded helical thick filament and by restricting each myosin to forming one crossbridge with only one actin filament. Crossbridges searching over an axial range of ±7.2 nm, and within an azimuthal range around actin of ±45°, can simulate the actin-labelling patterns observed in thin electron microscope sections well. However, the number of crossbridges attached between any myosin filament and an adjacent actin filament depends on their relative axial and azimuthal positions, and can vary by a factor of two. The relative position that maximized the number of attached bridges also produced the best modelling of the ‘double chevron’ appearance of two crossbridge pairs attaching within target zones every 38.6 nm, as seen in thin longitudinal sections, and the ‘flared X’ of crossbridges extending to four out of six surrounding actins at each crossbridge level seen in thin cross-sections. Micrographs show that excellent lattice register of rigor crossbridges in longitudinal sections does not depend on lateral register of thick or thin filament ends. Our modelling suggests how the crossbridge lattice may be generated by filaments becoming mutually annealed to the axial and azimuthal positions at which most crossbridges can attach, at which time the actin filaments are arranged at the diad positions of the P64 crystalline lattice. When the actin filaments are so oriented, in a P64 lattice, two crossbridges on adjacent actin filaments will slew toward the same point on the myosin filament, producing the flared X appearance of origin from a common stem and a single myosin, even if they originate from distinct points and separate molecules.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...