Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 79 (2001), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: A central role of iron in the pathogenesis of Parkinson's disease (PD), due to its increase in substantia nigra pars compacta dopaminergic neurons and reactive microglia and its capacity to enhance production of toxic reactive oxygen radicals, has been discussed for many years. Recent transcranial ultrasound findings and the observation of the ability of iron to induce aggregation and toxicity of α-synuclein have reinforced the critical role of iron in the pathogenesis of nigrostriatal injury. Presently the mechanisms involved in the disturbances of iron metabolism in PD remain obscure. In this review we summarize evidence from recent studies suggesting disturbances of iron metabolism in PD at possibly different levels including iron uptake, storage, intracellular metabolism, release and post-transcriptional control. Moreover we outline that the interaction of iron with other molecules, especially α-synuclein, may contribute to the process of neurodegeneration. Because many neurodegenerative diseases show increased accumulation of iron at the site of neurodegeneration, it is believed that maintenance of cellular iron homeostasis is crucial for the viability of neurons.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 56 (1991), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: Histochemical and biochemical determinations of total iron, iron (II), and iron (III) contents in brain regions from Parkinson's and Alzheimer's diseases have demonstrated a selective increase of total iron content in parkinsonian substantia nigra zona compacta but not in the zona reticulata. The increase of iron content is mainly in iron (III). The ratio of iron (II):iron (III) in zona compacta changes from almost 2:1 to 1:2. This change is thought to be relevant and may contribute to the selective elevation of basal lipid peroxidation in substantia nigra reported previously. Iron may be available in a free state and thus can participate in autooxidation of dopamine with the resultant generation of H2O2 and oxygen free radicals.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 56 (1991), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 63 (1994), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: Iron is the most abundant metal in the human body (Pollitt and Leibel, 1982; Youdim, 1988), and the brain, like the liver, contains a substantially higher concentration of iron than of any other metal (Yehuda and Youdim, 1988). Within the brain, iron shows an uneven distribution, with high levels in the basal ganglia (substantia nigra, putamen, caudate nucleus, and globus pallidus), red nucleus, and dentate nucleus (Spatz, 1922; Hallgren and Sourander, 1958; Hill and Switzer, 1984; Riederer et al., 1989). Iron deposition in the brain is mainly in organic storage forms such as ferritin but not hemosiderin (Hallgren and Sourander, 1958; Octave et al., 1983), with relatively little in a free and reactive form. Although the function of a regionally high brain iron content is unknown, the homeostasis of brain iron is thought to be necessary for normal brain function, especially in learning and memory (Youdim et al., 1989; Yehuda and Youdim, 1989; Pollit and Metallinos-Katsaras, 1990; Youdim, 1990). Thus, a high content of brain iron may be essential, particularly during development, but its presence means that injury to brain cells may release iron ions that can lead to oxidative stress via formation of oxygen free radicals. Such radicals are thought to be involved in lipid peroxidation of the cell membrane, leading to increased membrane fluidity, disturbance of calcium homeostasis, and finally cell death (Youdim et al., 1989; Halliwell, 1992). Iron is an essential participant in many metabolic processes, including (a) DNA, RNA, and protein synthesis, (b) as a cofactor of many heme and nonheme enzymes, (c) the formation of myelin, and (d) the development of the neuronal dendritric tree (Ben-Shachar et al., 1986; Youdim et al., 1991b). A deficiency of iron metabolism would therefore be expected to alter some or all of these processes (Jacobs and Worwood, 1980; Youdim, 1985, 1988). Studies of iron distribution in the human brain have demonstrated that the degree of iron deposition, primarily in the basal ganglia (a predominantly dopamine structure), increases with age (Hallgren and Sourander, 1958) and in certain disorders, most notably the basal ganglia disorders (Seitelberger, 1964). This review will present some of the experimental evidence indicating a role of disturbed iron metabolism as a cause of the neurodegenerative disorder Parkinson's disease and possibly other neurodegenerative disorders such as Alzheimer's disease. In addition, some of the neurochemical and histochemical findings obtained at autopsy from analyses of the brain from patients with neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and progressive supranuclear palsy (Steele-Richardson-Olszewski's disease) will be discussed. Special attention will be paid to clarifying the possible implication of the observed changes in the etiology of neurodegenerative disorders.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 60 (1993), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 55 (1990), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: The mitochondrial genome codes for 13 proteins which are located in the respiratory chain. In postmortem brain of patients with Parkinson's disease, decreased activity of complex I of the respiratory chain could be demonstrated. Because seven subunits of complex I are coded by the mitochondrial genome, we analyzed the mitochondrial DNA of human postmortem substantia nigra, putamen, and frontal cortex by the Southern blot technique. No deletions of the mitochondrial genome could be demonstrated, thus indicating that either subunits which are encoded by the nuclear genome are decreased or enzyme activity is diminished by metabolites, toxins, or increase of Fe3+.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 65 (1995), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: 57Fe Mössbauer spectroscopy at different temperatures has been used to characterize the nature of purified human neuromelanin isolated from the substantia nigra. The quantitative determination of iron(III) by estimation of the overall area of the Mössbauer spectrum at room temperature reveals an iron content of 2.8 ± 1.4%. No subspectra corresponding to divalent iron could be observed in these spectra. The derived Mössbauer parameters lead to the conclusion that the iron sites in the human neuromelanin are similar to those of human hemosiderin (or ferritin). However, owing to the water insolubility of the purified neuromelanin, it must be concluded that the neuromelanin hemosiderin (or ferritin) is bound in a protein matrix that makes it insoluble and difficult to stain histochemically. This protein attachment to neuromelanin is important in that it is what makes it different from synthetic dopamine melanin.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 57 (1991), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: : The vulnerability of substantia mgral (SN) melaninized dopamine neurons to neurodegeneration in Parkinson's disease and the selective increases of iron and basal lipid peroxidation in SN indicate that iron-melanin interaction could be crucial to the pathogenesis of this disease. The present study describes, for the first time, the identification and characterization of a high-affinity (KD= 13 nM) and a lower affinity (KD= 200 nM) binding site for iron on dopamine melanin. The binding of iron to melanin is dependent on pH and the concentration of melanin Iron dictators, U74500A, desferrioxamme, and to less extent 1,10-phenanthroline and chlorpromazine, but not the Parkinson-inducing neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, can inhibit the binding of iron to melanin and iron-induced lipid peroxidation. Although melanin atone diminishes basal lipid peroxidation in rat cortical homogenates, it can also potentiate that initiated by iron, a reaction inhibited by desferrioxamine. In the absence of an identifiable exogenous or endogenous neurotoxin in idiopathic Parkinson's disease, iron-melanin interaction in pars compacta of SN may be a strong candidate for the cytotoxic component of oxygen radical-induced neurodegeneration of meianinized dopamine neurons.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: Using energy-dispersive x-ray analysis on an electron microscope working in the scanning transmission electron microscopy mode equipped with a microanalysis system, we studied the subcellular distribution of trace elements in neuromelanin-containing neurons of the substantia nigra zona compacta (SNZC) of three cases of idiopathic Parkinson's disease (PD) [one with Alzheimer's disease (AD)] and of three controls, in Lewy bodies of SNZC, and in synthetic dopamine-melanin chemically charged or uncharged with Fe. Weak but significant Fe peaks similar to those of a synthetic melanin-Fe3+ complex were seen only in intraneuronal highly electron-dense neuromelanin granules of SNZC cells of PD brains, with the highest levels in a case of PD plus AD. whereas a synthetic melanin-Fe2+ complex showed much lower iron peaks, indicating that neuromelanin has higher affinity for Fe3+ than for Fe2+. No detectable Fe was seen in nonmelanized cytoplasm of SNZC neurons and in the adjacent neuropil in both PD and controls, in Lewy bodies in SNZC neurons in PD, and in synthetic dopamine-melanin uncharged with iron. These findings, demonstrating for the first time a neuromelanin-iron complex in dopaminergic SNZC neurons in PD, support the assumption that an iron-melanin interaction contributes significantly to dopaminergic neurodegeneration in PD and PD plus AD.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: Neuromelanin (NM) is a complex polymer pigment foundprimarily in the dopaminergic neurons of the human substantia nigra. Thestructure of NM is only partially characterized, and its synthesis pathwayremains unknown. We used nuclear magnetic and infrared spectroscopy to examinethe structure of human NM isolated from the substantia nigra compared withsynthetic dopamine melanins. Biochemical analyses were used to investigateproteinaceous and dopaminergic components in these samples. Following acidhydrolysis of NM samples, small amounts of DOPA, dopamine, and a variety ofamino acids were measured. These findings suggest a peptide component in NMstructure. NM also appears to contain a variety of unidentified structuralcomponents possibly derived from the oxidation of dopamine. Human NM differsstructurally from synthetic dopamine melanin, but both human and synthetic NMinclude an aromatic backbone. It is interesting that both human NM andsynthetic melanin also contain a large proportion of aliphatic structures. Ourresults suggest that NM is a more complex pigment than synthetic dopaminemelanin formed via dopamine autoxidation alone.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...