Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 605 (1990), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Several lines of evidence suggest that tyrosine phosphorylation is a key element in myelin formation, differentiation of oligodendrocytes and Schwann cells, and recovery from demyelinating lesions. Multiple sclerosis is a demyelinating disease of the human central nervous system, and studies of ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 15 (1986), S. 657-670 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Ultrastructural changes in the nodal and paranodal regions of myelinated nerve fibres of frog optic nerves were studied during early stages of Wallerian degeneration. The earliest changes seen include retraction of paranodal loops of myelin from the axolemma and disconnection of paranodal myelin loops from myelin lamellae. These paranodal changes are asymmetric around the node and may be more advanced on either the proximal or distal side. Axoplasmic changes, including segregation of microtubules from neurofilaments, disorientation of microtubules and accumulation of abnormal organelles at nodes, appear shortly. In some axons the ‘undercoating’ along the widened nodal surfaces becomes patchy, and blebs appear in the nodal axolemma. In freeze-fracture replicas a mixture of particle clusters and particle-free areas appears in both E- and P-faces of the nodal axolemma. Blebs remain particle free. Initially, E-face particles remain segregated to the node and are present only at much lower concentrations in the demyelinated paranodal axolemma, suggesting that they are not freely mobile at this stage. Nodal E-face particles begin to decrease on day 5 associated with an increase in particles at the adjacent demyelinated paranode, and by day 11 the particle distribution is uniformly low over the entire extent of the nodal and demyelinated paranodal axolemma. If nodal E-face particles represent sodium channels, as has been proposed, the sequence of changes in Wallerian degeneration would be compatible with a gradual redistribution of nodal sodium channels into the demyelinated paranode.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 17 (1988), S. 425-432 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The perineurium around frog dorsal root ganglia consists of layers of flattened cells separated by extracellular connective tissue elements. The number of layers is smaller than that in the perineurium around adjacent peripheral nerves, and some of the layers are discontinuous, but in both cases, cells in the same layer overlap and form tight junctions with each other, sometimes accompanied by desmosomes or gap junctions. In freeze-fracture replicas the tight junctions between perineurial cells around peripheral nerves consist of 13–91 strands (mean: ∼38). Some of these are parallel to the cell borders and some are oblique, forming elaborate meshworks. The overall width of each junction averages ∼12 (μm. In contrast, the tight junctions between perineurial cells around ganglia are much narrower, averaging ∼2 μm in width, and they consist of only 1–14 strands (mean: ∼6) with few anastomoses and many free ends. These structural differences provide a morphological basis for a less complete diffusion barrier around dorsal root ganglia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 28 (1999), S. 251-262 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The early controversies over myelinated nerve fibers focused on whether nerves are hollow or not, whether the fatty “marrow” (myelin) is inside the nerve fiber or around it, whether myelin is secreted by the axon or formed by another cell, whether nerve fibers are discrete or part of a syncytial network, whether nodes of Ranvier are present in central myelin or only in peripheral myelin. Since Geren's seminal discovery that peripheral myelin is formed by the Schwann cell plasma membrane wrapped around the axon, the focus has shifted. Myelin is clearly a living cell appendage, and the myelin sheath is dependent upon intercellular interactions not only during its formation, but throughout its lifetime and during pathological processes affecting either the axon or the myelin-forming cell. The myelinated fiber is a functional unit, an exquisite symbiosis, whose ability to perform optimally, in some cases whose very survival, depends on the effects the respective cells exert on one another. How are these interactions mediated? Which structures and functions depend on such interaction and which are independent of it? How do cells of the size and shape of myelin-forming cells cope with their metabolic demands and support their most distal components? What are the mechanisms and mutual consequences of demyelination or axonopathy? Relevant studies have burgeoned with the development of molecular biological and genetic engineering methods, and with improvements in microscopy, in vitro culture and specific immunostaining methods. This introductory essay provides an overview of the structural background and continuing controversies relevant to the articles that follow, which represent a sampling of current work and present new information on the molecular structure, function and pathology of myelin and axoglial interactions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 16 (1987), S. 497-509 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Although the myelin-deficient rat displays a gross deficiency of myelin in the CNS, occasional myelin segments of moderate thickness can be found. The typical lamellar pattern, consisting of alternating major dense and intermediate lines, is present in some regions of such segments, but the pattern is abnormal elsewhere. Redundant folds are common, and astrocyte processes occur frequently between the myelin sheath and axolemma or within the sheath. In the paranodal region, myelin lamellae occasionally form a palisade of ‘terminal loops’ against the axolemma, but discrete transverse bands occur only rarely and regular arrays of transverse bands over an extended length have not been seen. ‘Reversed’ paranodal junctions occur more often. Here the outermost layer of myelin, instead of being closest to the node, is furthest from it, and successive layers form terminal loops that approach the node progressively. These loops face away from the axon and do not contact it. At paranodal junctions of this kind only the innermost loop, or a small number of inner loops, adjoins the axolemma and, as a result, the size of the paranodal axoglial junction is markedly restricted. These defects in the paranodal junction may underlie the intrusion of astrocyte processes from either end of a myelin segment into the internodal periaxonal space and between myelin lamellae. Thus, one of the normal functions of the paranodal junction may be to restrict extension of astrocyte processes into and beneath myelin segments. The myelin-deficient rat also exhibits node-like specializations of the axolemma in association with glial cell processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 14 (1985), S. 731-747 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Analysis of the plasmalemma of frog dorsal root ganglion cells by freeze-fracture demonstrates regional differences in the distribution of intramembranous particles. Although P-face particles are distributed rather uniformly, the E-face particle concentration at the cell body (∼300 μm−2) is much lower than that at the axon hillock (∼900 μm−2), proximal initial segment (∼1000 μm−2), or intermediate portion of the initial segment (∼800 μm−2). The particle concentrations in the latter regions approach that at the node of Ranvier and, moreover, particle size analysis reveals that the E-face particles, like those at the node, include a large number that are 10 nm or more in diameter. Thin sections reveal patches of a dense undercoating on the cytoplasmic surface of the axolemma in some regions of the initial segment but not the axon hillock. It is concluded from these results that the axon hillock and the initial segment of dorsal root ganglion cells have some of the structural characteristics of the node of Ranvier.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract O1 hybridoma cells, which secrete an IgM antigalactocerebroside, were implanted into the spinal cord of cyclosporine-treated juvenile or adult rats, and the animals were sacrificed ∼2–3 wk later. About half the recipient animals developed myelin lesions. In some, sharply circumscribed foci of demyelination formed within the dorsal columns. Cellular reaction consisted of macrophages containing refractile globules in the parenchyma and within enlarged perivascular spaces as well as thickened endothelial cells. “Shadow plaques” also developed, i.e. regions in which axons were surrounded by thin myelin sheaths, compatible with remyelination. In addition, we found damaged axons, some of which were swollen with organelles, comparable to the enlarged axon profiles seen at sites of constriction or interruption. Compromise of the blood-brain barrier at sites of hybridoma growth was demonstrated by extravasation of Evans blue dye. Discontinuation of cyclosporine was followed by an anti-hybridoma, complement-fixing antibody response within 2–3 d. This model of focal CNS demyelination and remyelination, with evidence of some axon damage, is mediated by a defined IgM antiglycolipid monoclonal antibody secreted within the spinal cord parenchyma. The lesions, which are similar to those of multiple sclerosis, probably result from the interaction between the intrathecally secreted IgM antibody and complement entering from the circulation at foci of compromised blood-brain barrier plus activation of endogenous or hematogenous macrophages via their complement receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 5 (1976), S. 731-745 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The plasma membrane of myelinated axons in the frog brain has been examined by the freeze-fracture technique. The cytoplasmic leaflet of the axolemma contains numerous randomly distributed particles in nodal and internodal regions but relatively fewer particles in the axoglial junctional portion of the paranodal region. Particle distribution is even less uniform in the outer leaflet of the axolemma, which contains a low concentration of particles in the internodal region and a relatively high concentration at the node of Ranvier (∼1200 particles μm−2). The nodal particles tend to be larger than most intramembranous particles, approaching 200 Å diameter. The paranodal region of the leaflet is virtually devoid of such particles except in the narrow helical ‘groove’ which faces extracellular clefts between terminating glial processes. In places this pathway widens to form ‘lakes’ up to ∼0.3 μm2 area which contain large numbers of large particles resembling those at the node. The concentration of particles at the node is in the same range as the concentration of sodium channels estimated to be in this region and it is suggested on the basis of their location and concentration that these particles represent ionophores. The distribution of particles in the paranodal region suggests that the large intramembranous particles do not have free access to the axoglial junctional portion of the membrane and therefore the movement of such particles along the paranodal region of the membrane may occur primarily in the membrane of the ‘groove’ spiraling through this portion of the axolemma. Such a restriction in surface area for particle movements on either side of the node of Ranvier could result in trapping of particles at the node and thus contribute to their concentration in the nodal axolemma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 4 (1975), S. 697-712 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The innervated and noninnervated membranes ofTorpedo electrocytes have been examined by electron microscopy of thin-sectioned and freeze-fractured specimens. The ventral innervated membrane is ∼120 Å thick and is characterized by an unusually broad outer dense lamina (∼60 Å) in which a granular substructure can be resolved. The granules are ∼70 Å in diameter and are spaced irregularly. The same membrane specialization was noted in a previous study of amphibian myoneural junctions, and it was proposed then that the granular elements represent ACh receptor molecules. The morphologically equivalent structures presumably have the same significance in theTorpedo electric organ. However, in this case the specialized membrane covers the entire innervated surface, leading to the conclusion that high concentrations of receptors occur normally in extrajunctional as well as post-junctional regions of the innervated membrane of the electrocyte. In replicas of freeze-fractured specimens, the A face of this membrane is covered with large particles having the same distribution and approximate concentration as the granules visible in thin sections, indicating that the granules visible at the outer surface of the membrane extend at least into the hydrophobic middle layer of the membrane. The cytoplasmic surface of this membrane has an amorphous coating into which ‘decorated’ cytoplasmic filaments insert. Synaptic vesicle and axon terminal membranes also contain granules visible in thin sections but with a much sparser distribution. These probably correspond to the intramembranous particles seen in freeze-fractured specimens. Vesicles are occasionally attached. to the axolemma by thin linear strands.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...