Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Despite the extensive heterogeneity of G6PD deficiency, a single molecular variant, G6PD A-, seems predominant in sub-Saharan Africa12 14. It differs from the normal G6PD B allele at two amino-acid positions, one at position 376 encoding the B to A change and the other at position 202 that ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 76 (1998), S. 581-588 
    ISSN: 1432-1440
    Keywords: Key words Glucose-6-phosphate dehydrogenase deficiency ; Severe malaria ; Protection ; Heterozygotes ; Hemizygotes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Glucose-6-phosphate dehydrogenase (G6PD) is a cytoplasmic enzyme that is essential for a cell’s capacity to withstand oxidant stress. G6PD deficiency is the commonest enzymopathy of humans, affecting over 400 million persons worldwide. The geographical correlation of its distribution with the historical endemicity of malaria suggests that 66PD deficiency has risen in frequency through natural selection by malaria. This is supported by data from in vitro studies that demonstrate impaired growth of P. falciparum parasites in G6PD-deficient erythrocytes. Attempts to confirm that G6PD deficiency is protective in field studies of malaria have yielded conflicting results, but recent results from large case control studies conducted in East and West Africa provide strong evidence that the most common African G6PD deficiency variant, G6PD A–, is associated with a significant reduction in the risk of severe malaria for both G6PD female heterozygotes and male hemizygotes. The effect of female homozygotes on severe malaria remains unclear but can probably be assumed to be similar to that of comparably deficient male hemizygotes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...