Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Human communication research 2 (1976), S. 0 
    ISSN: 1468-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Media Resources and Communication Sciences, Journalism
    Notes: This study investigated the influence of teleconferencing medium and status on users' reaction to the medium. Subjects received either high or medium status inductions, and subgroups solved a problem in two node audio, video, and face-to-face conferencing configurations. These subgroups proceeded through the three media treatment conditions in counterbalanced order, and responded to scales measuring the aestheticism, evaluation, privacy, potency, and activity of the medium. Analysis indicated both face-to-face and video conferencing elicited more positive aestheticism and evaluation reactions than the audio conferencing medium. Face-to-face and audio conferencing media were perceived as being more private than the video teleconferencing medium while both video and audio media were perceived as being more potent than face-to-face conferencing. The analysis revealed neither an activity of the medium nor status main effect. The results were discussed in light of information theory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 404 (2000), S. 858-861 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] It has been suggested that increases in temperature can accelerate the decomposition of organic carbon contained in forest mineral soil (Cs ), and, therefore, that global warming should increase the release of soil organic carbon to the atmosphere. These predictions assume, ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 408 (2000), S. 790-790 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Giardina and Ryan reply Davidson et al. question the validity of our conclusions on the grounds that differences in disturbance, high variability among sites, and the use of a single-pool model to estimate turnover time (TT) obscured the effect of temperature on the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 8 (2002), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Autotrophic respiration may regulate how ecosystem productivity responds to changes in temperature, atmospheric [CO2] and N deposition. Estimates of autotrophic respiration are difficult for forest ecosystems, because of the large amount of biomass, different metabolic rates among tissues, and seasonal variation in respiration rates. We examined spatial and seasonal patterns in autotrophic respiration in a Pinus strobus ecosystem, and hypothesized that seasonal patterns in respiration rates at a common temperature would vary with [N] for fully expanded foliage and fine roots, with photosynthesis for foliage, and with growth for woody tissues (stems, branches, and coarse roots). We also hypothesized that differences in [N] would largely explain differences in maintenance or dormant-season respiration among tissues.For April–November, mean respiration at 15 °C varied from 1.5 to 2.8 μmol kg−1 s−1 for fully expanded foliage, 1.7–3.0 for growing foliage, 0.8–1.6 for fine roots, 0.6–1.1 (sapwood) for stems, 0.5–1.8 (sapwood) for branches, and 0.2–1.5 (sapwood) for coarse roots. Growing season variation in respiration for foliage produced the prior year was strongly related to [N] (r2 = 0.94), but fine root respiration was not related to [N]. For current-year needles, respiration did not covary with [N]. Night-time foliar respiration did not vary in concert with previous-day photosynthesis for either growing or fully expanded needles. Stem growth explained about one-third of the seasonal variation in stem respiration (r2 = 0.38), and also variation among trees (r2 = 0.43). We did not determine the cause of seasonal variation in branch and coarse root respiration, but it is unlikely to be directly related to growth, as the pattern of respiration in coarse roots and branches was not synchronized with stem growth. Seasonal variations in temperature-corrected respiration rates were not synchronized among tissues, except foliage and branches. Spatial variability in dormant-season respiration rates was significantly related to tissue N content in foliage (r2 = 0.67), stems (r2 = 0.45), coarse roots (r2 = 0.36), and all tissues combined (r2 = 0.83), but not for fine roots and branches. Per unit N, rates for P. strobus varied from 0.22 to 3.4 μmol molN−1 s−1 at 15 °C, comparable to those found for other conifers. Accurate estimates of annual autotrophic respiration should reflect seasonal and spatial variation in respiration rates of individual tissues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The effects of fire on soil-surface carbon dioxide (CO2) efflux, FS, and microbial biomass carbon, Cmic, were studied in a wildland setting by examining 13-year-old postfire stands of lodgepole pine differing in tree density (〈 500 to 〉 500 000 trees ha−1) in Yellowstone National Park (YNP). In addition, young stands were compared to mature lodgepole pine stands (∼110-year-old) in order to estimate ecosystem recovery 13 years after a stand replacing fire. Growing season FS increased with tree density in young stands (1.0 µmol CO2 m−2 s−1 in low-density stands, 1.8 µmol CO2 m−2 s−1 in moderate-density stands and 2.1 µmol CO2 m−2 s−1 in high-density stands) and with stand age (2.7 µmol CO2 m−2 s−1 in mature stands). Microbial biomass carbon in young stands did not differ with tree density and ranged from 0.2 to 0.5 mg C g−1 dry soil over the growing season; Cmic was significantly greater in mature stands (0.5–0.8 mg C g−1 dry soil). Soil-surface CO2 efflux in young stands was correlated with biotic variables (above-ground, below-ground and microbial biomass), but not with abiotic variables (litter and mineral soil C and N content, bulk density and soil texture). Microbial biomass carbon was correlated with below-ground plant biomass and not with soil carbon and nitrogen, indicating that plant activity controls not only root respiration, but Cmic pools and overall FS rates as well. These findings support recent studies that have demonstrated the prevailing importance of plants in controlling rates of FS and suggest that decomposition of older, recalcitrant soil C pools in this ecosystem is relatively unimportant 13 years after a stand replacing fire. Our results also indicate that realistic predictions and modeling of terrestrial C cycling must account for the variability in tree density and stand age that exists across the landscape as a result of natural disturbances.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 5 (1999), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The net ecosystem exchange of CO2 between forests and the atmosphere, measured by eddy covariance, is the small difference between two large fluxes of photosynthesis and respiration. Chamber measurements of soil surface CO2 efflux (Fs), wood respiration (Fw) and foliage respiration (Ff) help identify the contributions of these individual components to net ecosystem exchange. Models developed from the chamber data also provide independent estimates of respiration costs. We measured CO2 efflux with chambers periodically in 1996–97 in a ponderosa pine forest in Oregon, scaled these measurements to the ecosystem, and computed annual totals for respiration by component. We also compared estimated half-hourly ecosystem respiration at night (Fnc) with eddy covariance measurements. Mean foliage respiration normalized to 10 °C was 0.20 μmol m–2 (hemi-leaf surface area) s–1, and reached a maximum of 0.24 μmol m–2 HSA s–1 between days 162 and 208. Mean wood respiration normalized to 10 °C was 5.9 μmol m–3 sapwood s–1, with slightly higher rates in mid-summer, when growth occurs. There was no significant difference (P 〉 0.10) between wood respiration of young (45 years) and old trees (250 years). Soil surface respiration normalized to 10 °C ranged from 0.7 to 3.0 μmol m–2 (ground) s–1 from days 23 to 329, with the lowest rates in winter and highest rates in late spring. Annual CO2 flux from soil surface, foliage and wood was 683, 157, and 54 g C m–2 y–1, with soil fluxes responsible for 76% of ecosystem respiration. The ratio of net primary production to gross primary production was 0.45, consistent with values for conifer sites in Oregon and Australia, but higher than values reported for boreal coniferous forests. Below-ground carbon allocation (root turnover and respiration, estimated as Fs– litterfall carbon) consumed 61% of GPP; high ratios such as this are typical of sites with more water and nutrient constraints. The chamber estimates were moderately correlated with change in CO2 storage in the canopy (Fstor) on calm nights (friction velocity u* 〈 0.25 m s–1; R2 = 0.60); Fstor was not significantly different from summed chamber estimates. On windy nights (u* 〉 0.25 m s–1), the sum of turbulent flux measured above the canopy by eddy covariance and Fstor was only weakly correlated with summed chamber estimates (R2 = 0.14); the eddy covariance estimates were lower than chamber estimates by 50%.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Nutrient supply commonly limits aboveground plant productivity in forests, but the effects of an altered nutrient supply on gross primary production (GPP) and patterns of carbon (C) allocation remain poorly characterized. Increased nutrient supply may lead to a higher aboveground net primary production (ANPP), but a lower total belowground carbon allocation (TBCA), with little change in either aboveground plant respiration (APR) or GPP. Alternatively, increases in nutrient supply may increase GPP, with the quantity of GPP allocated aboveground increasing more steeply than the quantity of GPP allocated belowground. To examine the effects of an elevated nutrient supply on the C allocation patterns in forests, we determined whole-ecosystem C budgets in unfertilized plots of Eucalyptus saligna and in adjacent plots receiving regular additions of 65 kg N ha−1, 31 kg P ha−1, 46 kg K ha−1, and macro- and micronutrients. We measured the absolute flux of C allocated to the components of GPP (ANPP, TBCA and APR), as well as the fraction of GPP allocated to these components.Fertilization dramatically increased GPP. Averaged over 3 years, GPP in the fertilized plots was 34% higher than that in the unfertilized controls (3.95 vs. 2.95 kg C m−2 yr−1). Fertilization-related increases in GPP were allocated entirely aboveground – ANPP was 85% higher and APR was 57% higher in the fertilized than in the control plots, while TBCA did not differ significantly between treatments. Carbon use efficiency (NPP/GPP) was slightly higher in the fertilized (0.53) compared with the control plots (0.51). Overall, fertilization increased ANPP and APR, and these increases were related to a greater GPP and an increase in the fraction of GPP allocated aboveground.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Land devoted to plantation forestry (50 million ha) has been increasing worldwide and the genus Eucalyptus is a popular plantation species (14 million ha) for its rapid growth and ability to grow well on a wide range of sites. Fertilization is a common silvicultural tool to improve tree growth with potential effects on stand water use, but the relationship between wood growth and water use in response to fertilization remains poorly quantified. Our objectives in this study were to determine the extent, timing and longevity of fertilization effects on water use and wood growth in a non-water limited Eucalyptus saligna experimental forest near Hilo, HI. We evaluated the short- and long-term effects of fertilization on water use by measuring sap flux per unit sapwood area, canopy conductance, transpiration per unit leaf area and water-use efficiency in control and fertilized stands. Short-term effects were assessed by comparing sap flux before and after fertilizer application. Long-term effects were assessed by comparing control plots and plots that had received nutrient additions for 5 years.For the short-term response, total water use in fertilized plots increased from 265 to 487 mm yr−1 during the 5 months following fertilization. The increase was driven by an increase in stand leaf area accompanied by an increase in sap flux per unit sapwood area. Sap flux per unit leaf area and canopy conductance did not differ during the 5 months following fertilizer additions. For the last 2 months of our short-term measurements, fertilized trees used less water per unit carbon gain (361 compared with 751 kg H2O kg C−1 in control stands). Trees with 5 years of fertilization also used significantly more water than controls (401 vs. 302 mm yr−1) because of greater leaf area in the fertilized stands. Sap flux per unit sapwood area, sap flux per unit leaf area, and canopy conductance did not differ between control and fertilized trees in the long-term plots. In contrast to the short-term response, the long-term response of water use per unit wood growth was not significant. Overall, fertilization of E. saligna at our site increased stand water use by increasing leaf area. Fertilized trees grew more wood and used more water, but fertilization did not change wood growth per unit water use.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Oxford : Periodicals Archive Online (PAO)
    Human communication research. 2:3 (1976:Spring) 255 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Keywords: Maintenance respiration ; Woody-tissue respiration ; Carbon budgets ; Temperature response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We estimate maintenance respiration for boles of four temperate conifers (ponderosa pine, western hemlock, red pine, and slash pine) from CO2 efflux measurements in autumn, when construction respiration is low or negligible. Maintenance respiration of stems was linearly related to sapwood volume for all species; at 10°C, respiration per unit sapwood volume ranged from 4.8 to 8.3 μmol CO2 m−3 s−1. For all sites combined, respiration increased exponentially with temperature (Q 10 =1.7, r 2=0.78). We estimate that maintenance respiration of aboveground woody tissues of these conifers consumes 52–162 g C m−2 y−1, or 5–13% of net daytime carbon assimilation annually. The fraction of annual net daytime carbon fixation used for stem maintenance respiration increased linearly with the average annual temperature of the site.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...