Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1436-2449
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Summary Unit cell expansion data for branched polyethylene (PE) rapidly quenched from the melt are examined with reference to the level of chain defects incorporated within the crystal lattice. The data presented here complement earlier studies and show that the incorporation of defects, ɛc, after quenching is twice as large as the penetration obtained for slowly cooled samples. The parallel increase of the K-distortions parameter with ɛc is in direct support of the inclusion of a large fraction (40%) of bulky defects (butyl or larger) within the polyethylene lattice.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-1536
    Keywords: Branchedpolyethylene ; equilibriummelting point ; enthalpy offusion ; surface free energy ; kinks ; chain defects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract New equilibrium melting point data, for polyethylene containing chain defects, are tested in the light of random copolymer predictions. A simplified expression for the melting point depression of random copolymers containing small amounts of non-crystallizable units is derived. Non-equilibrium melting data for rapidly quenched polyethylene samples are also reported. The fusion enthalpyΔH∘(X), and the surface free energyσ e for crystals containing defects are evaluated using crystallinity, equilibrium meltingtemperatures and X-ray long period data. It is shown that increasing defect penetration within crystals induces a decrease ofΔH∘(X) withX in accordance with theoretical predictions. Finallyσ e is, similarly, shown to decrease with increasing number of chain defects attached to the crystal surface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 49-54 
    ISSN: 0887-6266
    Keywords: substituted poly(paraphenylene) ; phase transitions ; synchrotron radiation ; mesophases ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The thermal behavior of poly(para-2,5-didecyl-p-phenylene) has been investigated by differential scanning calorimetry and real time X-ray diffraction. Poly(para-2,5-didecyl-p-phenylene) is a semicrystalline material that crystallizes in a layered structure. The system exhibits two thermal transitions in the investigated temperature range. The first one, occurring at lower temperatures, provokes a reduction of the layered spacing accompanied by an appreciable disordering of the lateral side chains. Above the first transition the material is shearable, highly viscous, and birefringent. Thus, we have associated this transition to the formation of a layered mesophase. The higher temperature transition exhibits a twofold endothermic DSC peak and is characterized by the disappearance of X-ray diffracted intensity. At temperatures above the second transition the system presents the characteristics of an isotropic melt. Consequently, we have associated this transition with the complete disordering of the polymeric backbones. By following an appropriate thermal treatment it has been shown that the twofold shape of the endotherm characterizing the higher temperature transition can be changed into a single endotherm. This effect has been interpreted as being due to the kinetics of main-chain ordering. This ordering seems to proceed by the initial growth of domains with a high level of order followed by the subsequent increase of these domains through the inclusion of less ordered material. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 49-54, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...