Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Digital circuits such as the flip-flop use feedback to achieve multi-stability and nonlinearity to restore signals to logical levels, for example 0 and 1. Analogue feedback circuits are generally designed to operate linearly, so that signals are over a range, and the response is unique. By ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 1572-1576 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A quasi-stable threshold voltage (Vt) shift is imparted onto field-effect transistors (FETs) with organic semiconductors and polymer dielectrics. Adjustment of Vt from accumulation mode to zero or depletion mode is demonstrated for both p-channel and n-channel FETs, and is accomplished by applying a depletion voltage to the gate prior to device operation. Hydrophobic dielectrics and dopant-resistant semiconductors were advantageous. A pixel circuit that utilizes this nonvolatile memory element is proposed. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Analog integrated circuits and signal processing 13 (1997), S. 123-151 
    ISSN: 1573-1979
    Keywords: transconductance ; amplifier ; wide-linear-range ; degeneration ; noise ; dynamic range ; cochlea ; low-power
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology
    Notes: Abstract The linear range of approximately ±75mV of traditional subthreshold transconductance amplifiers istoo small for certain applications—for example, for filtersin electronic cochleas, where it is desirable to handle loudsounds without distortion and to have a large dynamic range.We describe a transconductance amplifier designed for low-power(〈 1 µW) subthreshold operation with a wideinput linear range. We obtain wide linear range by widening thetanh, or decreasing the ratio of transconductance to bias current,by a combination of four techniques. First, the well terminalsof the input differential-pair transistors are used as the amplifierinputs. Then, feedback techniques known as source degeneration(a common technique) and gate degeneration (a new technique)provide further improvements. Finally, a novel bump-linearizationtechnique extends the linear range even further. We present signal-flowdiagrams for speedy analysis of such circuit techniques. Ourtransconductance reduction is achieved in a compact 13-transistorcircuit without degrading other characteristics such as dc-inputoperating range. In a standard 2 µm process,we were able to obtain a linear range of ±1.7V.Using our wide-linear-range amplifier and a capacitor, we constructa follower–integrator with an experimental dynamic rangeof 65 dB. We show that, if the amplifier's noise is predominantlythermal, then an increase in its linear range increases thefollower–integrator'sdynamic range. If the amplifier's noise is predominantly 1/f,then an increase in its linear range has no effect on thefollower–integrator'sdynamic range. To preserve follower–integrator bandwidth,power consumption increases proportionately with an increasein the amplifier's linear range. We also present data for changesin the subthreshold exponential parameter with current leveland with gate-to-bulk voltage that should be of interest to alllow-power designers. We have described the use of our amplifierin a silicon cochlea [1, 2].
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Analog integrated circuits and signal processing 16 (1998), S. 245-274 
    ISSN: 1573-1979
    Keywords: cochlea ; wide-dynamic-range ; cochlear implants ; low-power ; automatic gain control ; traveling wave
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Low-power wide-dynamic-range systems are extremely hard to build. The biological cochlea is one of the most awesome examples of such a system: It can sense sounds over 12 orders of magnitude in intensity, with an estimated power dissipation of only a few tens of microwatts. In this paper, we describe an analog electronic cochlea that processes sounds over 6 orders of magnitude in intensity, and that dissipates 0.5 mW. This 117-stage, 100 Hz to 10 KHz cochlea has the widest dynamic range of any artificial cochlea built to date. The wide dynamic range is attained through the use of a wide-linear-range transconductance amplifier, of a low-noise filter topology, of dynamic gain control (AGC) at each cochlear stage, and of an architecture that we refer to as overlapping cochlear cascades. The operation of the cochlea is made robust through the use of automatic offset-compensation circuitry. A BiCMOS circuit approach helps us to attain nearly scale-invariant behavior and good matching at all frequencies. The synthesis and analysis of our artificial cochlea yields insight into why the human cochlea uses an active traveling-wave mechanism to sense sounds, instead of using bandpass filters. The low power, wide dynamic range, and biological realism make our cochlea well suited as a front end for cochlear implants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...