Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology reviews 23 (1999), S. 0 
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Ribonuclease P is the endonuclease required for generating the mature tRNA 5′-end. The ribonucleoprotein character of this enzyme has now been proven in most organisms and organelles. Exceptions, however, are still the chloroplasts, plant nuclei and animal mitochondria where no associated RNAs have been detected to date. In contrast to the known RNA subunits, which are fairly well-conserved in size and structure among diverse phylogenetic groups, the protein contribution to the holoenzyme is highly variable in size and number of the individual components. The structure of the bacterial protein component has recently been solved. In contrast, the spatial arrangement of the multiple subunits in eukaryotic enzymes is still enigmatic. Substrate requirements of the enzymes or their catalytic RNA subunits are equally diverse, ranging from simple single domain mimics to an almost intact three-dimensional structure of the pre-tRNA substrate. As an example for an intermediate in the enzyme evolution, ribonuclease P from the Cyanophora paradoxa cyanelle will be discussed in more detail. This enzyme is unique, as it combines cyanobacterial and eukaryotic features in its function, subunit composition and holoenzyme topology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 92 (1992), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Streptomyces coelicolor was found to be devoid of glutaminyl-tRNA synthetase. In this bacterium, tRNAGln is aminoacylated by glutamyl-tRNA synthetase to yield glutamyl-tRNAGln, followed by correction to glutaminyl-tRNAGln by a tRNA-dependent amidotransferase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The ultraviolet spectrum of the haem- or chlorophyllin-Sepharose-bound fraction showed the characteristics typical of nucleic acids. From these data and the fact that ribonuclease treatment of this fraction destroyed its ability to support 8-aminolevulinate formation in the reconstitution assay, it ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 331 (1988), S. 187-190 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] To clarify further the role of tRNA in chlorophyll biosynthesis1 we elucidated the structure of all glutamate isoacceptors. Chromatography of crude barley chloroplast tRNAs by reversed-phase HPLC yields three peaks of glutamate-acceptor activity when assayed with a homologous chloroplast ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular biology reports 22 (1995), S. 139-145 
    ISSN: 1573-4978
    Keywords: chloroplast ; cyanelle ; evolution ; pre-tRNA processing ; ribozyme ; wheat germ
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract RNase P consists of both protein and RNA subunits in all organisms and organelles investigated so far, with the exception of chloroplasts and plant nuclei where no enzyme-associated RNA has been detected to date. Studies on substrate specificity revealed that cleavage by plant nuclear RNase P is critically dependent on a complete and intact structure of the substrate. No clearcut answer is yet possible regarding the order of processing events at the 5′ or 3′ end of tRNAs in the case of nuclear or chloroplast processing enzymes. RNase P from a phylogenetically ancient photosynthetic organelle will be discussed in greater detail: The enzyme from theCyanophora paradoxa cyanelle is the first RNase P from a photosynthetic organelle which has been shown to contain an essential RNA subunit. This RNA is strikingly similar to its counterpart from cyanobacteria, yet it lacks catalytic activity. Properties of the holoenzyme suggest an intermediate position in RNA enzyme evolution, with an eukaryotic-type, inactive RNA and a prokaryotic-type small protein subunit. The possible presence of an RNA component in RNase P from plant nuclei and modern chloroplasts will be discussed, including a critical evaluation of some criteria that have been frequently applied to elucidate the subunit composition of RNase P from different organisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5028
    Keywords: tRNAGlu ; glutamyl-tRNA synthetase ; glutamyl-tRNA reductase ; substrate specificity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In chloroplasts and a number of prokaryotes, δ-aminolevulinic acid (ALA), the universal precursor of porphyrins, is synthesized by a multistep enzymatic pathway with glutamyl-tRNAGlu as an intermediate. The ALA synthesizing system from barley chloroplasts is highly specific in its tRNA requirement for chloroplast tRNAGlu; a number of other Glu-tRNAs are inactive in ALA formation although they can be glutamylated by chloroplast aminoacyl-tRNA synthetases. In order to obtain more information about the structural features defining the ability of a tRNA to be recognized by the ALA synthesizing enzymes, we purified and sequenced two cytoplasmic tRNAGlu species from barley embryos which are inactive in ALA synthesis. By using glutamylated tRNAs as a substrate for the overall reaction, we showed that Glu-tRNA reductase is the enzyme responsible for tRNA discrimination.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 20 (1992), S. 601-607 
    ISSN: 1573-5028
    Keywords: chloroplast ; δ-aminolevulinic acid ; regulation ; nucleotide sequence ; tRNAAsp ; tRNAGlu
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two chloroplast tRNAAsp species from barley were purified by chromatography on benzoylated DEAE-cellulose and sequenced. They differ in the modification at position 34, where queuosine (Q) is present in one of the species. The same chromatographic procedure yielded only one tRNAGlu species, corroborating the assumption that the same tRNAGlu species participates in both protein and chlorophyll biosynthesis. The level of tRNAGlu remains unchanged after light treatment of etiolated seedlings, whereas the amount of tRNAAsp decreases to about 50% relative to the level of dark-grown plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...