Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Microbial ecology 12 (1986), S. 147-153 
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Recent microbiological findings show how compounds, regarded hitherto as unusual substrates for anaerobic bacteria, are degraded under anaerobic conditions. The complete conversion of halobenzoic acids and halophenolic compounds to methane by lake sediment and sewage sludge microorganisms has been demonstrated. Since haloaromatic compounds are widely used and may be found in such effluents as those from the forest industry, these studies could stimulate a broader interest in anaerobic treatment of industrial waste waters which contain unusual organic compounds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 34 (1991), S. 818-822 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary After elucidating the composition of an anaerobic bacterial enrichment culture treating sulphite evaporator condensate (SEC), an effluent in the pulp and paper industry, we built up stepwise a defined mixed culture to convert the organic constituents of SEC (acetate, methanol, furfural) to methane and CO2. In batch cultures Desulfovibrio furfuralis and Methanobacterium bryantii degraded furfural in the absence of sulphate via inter-species H2 transfer yielding 0.42 mol methane and 1.87 mol acetate/mol furfural degraded. When Methanosarcina barkeri was added to this diculture, acetate was also transformed to methane yielding 0.93 mol methane/mol acetate converted. This consortium (D. furfuralis, Methanobacterium bryantii and Methanosarcina barkeri) degraded furfural in continuous culture (fixed-bed loop reactor) to 92%, but the conversion of acetate was only 67%. The conversion of acetate could be further improved to 86% by adding 10 mm sulphate to the medium. This resulted in a space time yield of 10.9 g chemical oxygen demand (COD)/1 per day for the overall conversion. With a consortium consisting of M. barkeri, Methanobrevibacter arboriphilus, Methanosaeta concilii and D. furfuralis, a synthetic SEC could be degraded at a space time yield of 13.35 g COD/1 per day. This defined culture degraded all the constituents of SEC at an efficiency of almost 90% compared to an enrichment culture under identical conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Berlin : Wiley-Blackwell
    Acta Biotechnologica 7 (1987), S. 337-345 
    ISSN: 0138-4988
    Keywords: Life Sciences ; Life Sciences (general)
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: The conversion of lactose  -  the main constituent of whey  -  to methane and carbon dioxide was studied using different defined constructed cultures, imploying strains of Methanosarcina barkeri, Methanobacterium bryantii, Escherichia coli, Acetobacterium woodii, Lactobacillus casei, and Lactobacillus plantarum. The following combinations of strains (food chains) were studied with respect to efficiency and yield of lactose conversion (methane yield in parentheses): E. coli and M. barkeri (4.5-7.6%), E. coli and M. bryantii (13.3%),E. coli, M. barkeri and M. bryantii (54%), L. casei, A. woodii and M. barkeri (93.3%). These conversions were carried out in pH controlled batch fermentations. A very efficient coculture was a combination of L. plantarum with A. woodii and M. barkeri: in chemostat cultures lactose was converted to methane and carbon dioxide with a yield of about 90%, at dilution rates of 0.27 d-1to 0.37 d-1.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Berlin : Wiley-Blackwell
    Acta Biotechnologica 20 (2000), S. 189-201 
    ISSN: 0138-4988
    Keywords: Life Sciences ; Life Sciences (general)
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Desulfovibrio vulgaris strain PY1 was isolated from a 3-chlorobenzoic acid (3CBA) degrading anaerobic enrichment culture, using anaerobic Percoll density centrifugation. When grown on pyruvate (20 mM), in the absence of sulphate and under strict anaerobic conditions, this organism converted not only the co-substrates benzoate (BA), 3-amino-BA and 3CBA to the corresponding alcohols but also ten other different halogenated benzoic acids, viz., 4-Cl-, 3-Br-, 4-Br-, 3-I-, 3-F-, 4-F-, 2,4-di-Cl-, 2,5-di-Cl-, 3,4-di-Cl- and 3,5-di-Cl-BA. This was verfied with HPLC and GC/MS spectrometric analyses. The yields of the co-substrate converted after 30 days of growth were between 20% and 88%, depending on the compounds which had been added at initial concentrations of 500 μM. Sulphate, sulphite, thiosulphate and disulphite inhibited the formation of 3-Cl-benzyl alcohol (3CBOH), i.e. a 97 to 99% inhibition, and nitrate and sulphur had no effect (a 7-10% inhibition). In cell-free extracts, the reduction of 3CBA to 3CBOH required strict anaerobic conditions, pyruvate or H2 as electron donors and the addition of methylviologen (MV), FAD, FMN or ferredoxin as electron carriers. The specific activity of the reduction of 3CBA to 3CBOH in crude extract was 5.3 nmol/(mg protein min). The reaction was not inhibited by additions of sulphate or sulphite (5 mM), but was completely inhibited at concentrations of 10 mM 3CBA or 50 mM BA. A carboxylic acid reductase (aldehyde dehydrogenase), which acted on non-activated 3CBA and was responsible for the reduction of 3CBA to 3-Cl-benzaldehyde, was found in the solube fraction (94% of the total activity). These results demonstrate that strain PY1 was able to effectively reduce a wide range of halogenated benzoic acids to the corresponding alcohols.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...