Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 506-508 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We report direct measurements of the sensitivity of a channel electron multiplier to electrons with different spin orientations. Four regions of the multiplier cone were examined using polarized electrons at 100-eV incident energy. Pulse counting and analog modes of operation were both investigated and in each case the observed spin effects were less than 0.5%.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 6079-6083 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nanostructured materials and devices will play an important role in a variety of future technologies, including magnetics. We describe a method for nanostructure fabrication based on the use of laser light to focus neutral atoms. The method uses neither a mask nor a resist, but relies on the direct deposition of atoms to form permanent structures. Since the atomic de Broglie wavelength is of picometer order, the size of structures produced is not significantly limited by diffraction, as in optical lithography. Lines as narrow as 38 nm full width at half maximum spaced by 213 nm have been produced and we have demonstrated the production of a two-dimensional array of dots. The highly parallel process of nanostructure formation and the intrinsic accuracy of the optical wavelength that determines structure spacing suggest a number of interesting applications, including calibration standards for various types of microscopy, lithography, and micromeasurement systems. Possible magnetic applications include the production of arrays of magnetic elements, laterally structured giant magnetoresistive devices, and the patterning of magnetic media.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 72 (2001), S. 4477-4479 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We have developed an enhanced Littrow configuration extended cavity diode laser (ECDL) that can be tuned without changing the direction of the output beam. The output of a conventional Littrow ECDL is reflected from a plane mirror fixed parallel to the tuning diffraction grating. Using a free-space Michelson wavemeter to measure the laser wavelength, we can tune the laser over a range greater than 10 nm without any alteration of alignment. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 71 (2000), S. 3342-3344 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We describe a long-lived, bright and intense rubidium atomic beam source based on a previously published recirculating candlestick design for sodium, with several modifications and enhancements. The device operates for thousands of hours without maintenance, with brightness of 1.9×1022 m−2 s−1 sr−1. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...