Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of low temperature physics 25 (1976), S. 793-805 
    ISSN: 1573-7357
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Heat capacity measurements in monolayer3He and4He films adsorbed on Grafoil at densities higher than the one corresponding to the substrate lattice registered phase show a series of sharp, narrow peaks at 1 K for densities between 0.072 and 0.077Å −2. The exact nature of the transition cannot be determined from this measurement alone, but several possibilities are discussed. It has been determined that the melting line of two-dimensional solid films starts atn=0.078Å −2 for both isotopes. Extensive heat capacity measurements at and above this density are presented for3He, and some new measurements for4He are shown to complement measurements reported elsewhere. The solid3He measurements are compared to predictions of recent models for melting in two dimensions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of low temperature physics 87 (1992), S. 73-93 
    ISSN: 1573-7357
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract New measurements of second sound attenuation in bulk flowing He II are reported which extend to a region of higher Reynolds number. An expression for the attenuation explicitly containing the quantum vortex line density is developed which allows comparison with vortex line density data taken by other means. A bellows driven experimental apparatus is used to produce bulk flow velocities of 0 to 1 m/sec in a channel of 4.064 mm square internal cross section. Second sound pulses are produced by applying a square voltage pulse 200 Μs width and variable height to a strain gauge heater. The second sound pulses are detected with thin film sensors mounted 56 and 119 mm downstream. The velocity-dependent attenuation, measured as a function of bulk flow velocity at 1.5, 1.8, and 2.0 K, is compared with data from other researchers. The attenuation, and thus the vortex line density, appears to follow a gradual transition from laminar to turbulent behavior. Current theories do not account for the presence of quantized vortices in bulk flowing He II, where (v n−v s), and thus do not explain the observed second sound attentuation in this regime.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of low temperature physics 96 (1994), S. 245-274 
    ISSN: 1573-7357
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Experimental results are presented for counterflow and isothermal coflow through large-pore porous materials, with porosities greater than 90% and permeabilities of order 10−11 m2. Counterflow velocities ranging from 0.06 to 0.14 m/s were obtained. Because of the large-pore geometry, and the velocity range investigated, the superfluid is fully turbulent. The counterflow data are well described by the two-fluid model using the Schwarz model of homogeneous mutual friction, with a larger, empirically-modified, mutual friction coefficient. The same mutual friction model is applied to the coflow results, assuming that dissipation due to superfluid vortex interaction with the wall of the porous media is negligible. In this case, the normal-fluid and superfluid velocities are coupled through the mutual friction, and relative velocities are calculated from pressure drop measurements. For mass flow velocities in the range 0.00 to 0.10 m/s, we calculate relative velocities up to 0.07 m/s, and normal-fluid velocities in excess of 0.04m/s. An interesting feature of the coflow pressure drop, as a function of the normal-fluid velocity, is that it is larger than the counterflow pressure drop by the ratio of the total density to the normal-fluid density.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...