Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 32 (1996), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : A variety of management options are used to minimize losses of nitrogen (N), phosphorus (P), and other potential pollutants from agricultural source areas. There is little information available, however, to indicate the effectiveness of these options (sometimes referred to as Best Management Practices, or BMPs) on basin scales. The objective of this study was to assess the water quality effectiveness of BMPs implemented in the 3240 ha Lincoln Lake basin in Northwest Arkansas. Land use in the basin was primarily forest (34 percent) and pasture (56 percent), with much of the pasture being regularly treated with animal manures. The BMPs were oriented toward minimizing the impact of confined animal operations in the basin and included nutrient management, dead bird composter construction, and other practices. Stream flow samples (representing primarily base flow conditions) were collected bi-weekly from five sites within the basin from September 1991 through April 1994 and analyzed for nitrate N (NO3-N), ammonia N (NH3-N), total Kjeldahl N (TKN), ortho-P (PO4-P), total P (TP), chemical oxygen demand (COD), and total suspended solids (TSS). Mean concentrations of PO4-P, TP, and TSS were highest for subbasins with the highest proportions of pasture land use. Concentrations of NH3-N, TKN, and COD decreased significantly with time (35–75 percent/year) for all sub-basins, while concentrations of other parameters were generally stable. The declines in analysis parameter concentrations are attributed to the implementation of BMPs in the basin since (a) the results are consistent with what would be expected for the particular BMPs implemented and (b) no other known activities in the basin would have caused the declines in analysis parameter concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Environmental monitoring and assessment 58 (1999), S. 151-172 
    ISSN: 1573-2959
    Keywords: GIS ; ground water vulnerability ; leaching index ; nitrate ; pesticide ; phosphorus ; potassium ; statistical analysis ; uncertainty
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Statistical methods and a Geographic Information System (GIS) were used to investigate potential indicators of ground water vulnerability to agricultural chemical contamination in a representative area of the Mississippi River alluvial aquifer. A total of 47 wells were sampled for analysis of nitrate, phosphorus, potassium, and 13 pesticides commonly-used in the area. Ten soil and hydrogeologic variables and five ground water vulnerability indices were examined to explain the variations of chemical concentrations. The results showed that no individual soil or hydrogeologic variables or their linear combinations could explain more than 25% of the variation of the chemical concentrations. A quadratic response surface model with the values of confining unit thickness, slope, soil permeability, depth to ground water, and recharge rate accounted for 62% of the variation of nitrate, 43% of P, and 83% of K, suggesting that the interactions among soil and hydrogeologic variables were significant. Observed trends of decreasing nitrate and P concentrations with increasing well depth and/or depth to ground water seemed to correlate with carbonate equilibrium in the aquifer and more reduced environment with depth. In view of uncertainties involved, it was recognized that the limitations associated with input data resolution used in GIS and the formulation of leaching indices limited their use for predicting ground water vulnerability. Misuse of pesticides could be another factor that would complicate the relationships between pesticide concentrations and the vulnerability indices.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...