Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 45 (1982), S. 217-229 
    ISSN: 1432-1106
    Keywords: Rat ; Thalamic reticular nucleus ; Lateral geniculate nucleus ; Electrophysiology ; HRP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Electrophysiological and neuroanatomical techniques have been used to study the properties of cells in the reticular nucleus of the thalamus (RNT) responsive to photic stimuli. In the rat these cells are located in a discrete region of the nucleus lying immediately rostral to the dorsal lateral geniculate nucleus (LGNd), where the visual field is represented in a retinotopic fashion. After injections of horseradish peroxidase (HRP) into this area, neurones labelled with reaction product were found in the LGNd and not in other thalamic relay nuclei. After HRP injections into the LGNd, labelled RNT cells were found only within the region which contains neurones responsive to photic stimuli. These observations suggest that there is a precise reciprocal relation between the two areas. Studies and comparisons of the responses of relay cells (P cells) in LGNd and cells in RNT to electrical shocks lead us to conclude that RNT cells receive their excitation mainly via those relay cells in LGNd which are themselves excited by fast-conducting retinal ganglion cell axons. Such cells in LGNd have phasic responses and concentric receptive fields while RNT cells have phasic responses and on/off fields and a comparison of the receptive field sizes of P cells and RNT cells suggests that only a small number of LGNd relay cells converge on to each RNT cell. Further, although a particular functional class of relay cells in LGNd (Y-type) is shown to provide the major input to visually responsive RNT cells, both Y type and W type relay cells are subject to their inhibitory control. These results furnish evidence that cells in the RNT have an important role in modulating the flow of visual information from the LGNd to cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 49 (1983), S. 156-156 
    ISSN: 1432-1106
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 7 (1995), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Consistent with numerous previous studies, we have found that in adult rats 29% of cells retrogradely prelabelled by injections into retino-recipient nuclei are lost 1 week after intraorbital section of the optic nerve. This figure increases to 76% 2 weeks after axotomy. Intraocular injections of 150 ng of 480 kda chondroitin sulphate proteoglycan purified from the superior colliculi of neonatal rats were performed every third day after axotomy. This procedure resulted in the loss of only 3 and 28% of the axotomized retinal ganglion cells 7 and 14 days respectively after optic nerve section. Intraocular injections of chondroitin sulphate type C, one of the sugar types present on the collicular proteoglycan, also resulted in a significant saving of axotomized ganglion cells (with the loss of only 48% 14 days after optic nerve lesion). These findings suggest that the collicular proteoglycan, and to a lesser extent its sugar moieties, substantially slows down the degeneration of adult retinal ganglion cells following axotomy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 86 (1991), S. 182-189 
    ISSN: 1432-1106
    Keywords: Xenograft ; Development ; Trophism ; Retinal ganglion cell ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Fetal rabbit retinae can grow and differentiate when transplanted to the collicular region of neonatal rats. In addition, the observed survival of retinal ganglion cells within grafts is associated with the extension of axons into the superior colliculus of the host brain, suggesting that the factors influencing the guidance of axons and the survival of ganglion cells may be homologous across different mammalian orders.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 84 (1991), S. 142-158 
    ISSN: 1432-1106
    Keywords: Thalamic lesions ; Kainic acid ; HRP ; Callosal connections ; Laminar density ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The patterns of callosal interconnections between the visual cortices of rats display considerable plasticity in response to various neonatal manipulations. In the present study, many neurones in the principal visual thalamic relay nuclei, the dorsal lateral geniculate nucleus (DLG) and to a lesser extent those in the lateral posterior nucleus (LP) were destroyed by injections of the neurotoxin — kainic acid — on the first day of postnatal life. Four weeks later, as demonstrated with the anterograde and retrograde transport of the enzyme horseradish peroxidase (HRP) injected into the occipital lobe of one hemisphere, callosally projecting neurones and terminals were distributed more widely in the retinotopically organized areas 17, 18a and 18b of the visual cortex ipsilateral to the lesioned visual thalamus than in unoperated control animals of the same age. By contrast, in the visual cortex contralateral to the lesioned visual thalamus the areal distribution of callosally projecting neurones and terminals was similar to that of the controls, that is, largely but not exclusively restricted to the common border of areas 17 and 18a. Both in unoperated and operated animals, cells in lamina V of several cytoarchitectonically defined areas that are not retinotopically organized (area 8 in the frontal lobe, area 29d in the retrosplenial limbic cortex and perirhinal areas 35/13 in the temporal lobe) also project to contralateral visual cortices. In areas 8 and 29d, the total numbers, laminar distributions and densities of labelled callosal cells both ipsilateral and contralateral to the kainate-injected visual thalamus were similar to those in the controls. However, in the temporal lobe, the areal distribution of the labelled callosal neurones was more extensive than that in the controls and labelled cells in areas 35/13 of the cortex contralateral to the kainate-lesioned visual thalamus merged with those in the neighbouring areas 20 and 36. By contrast, the areal distribution of associational neurones in area 18a and in nonretinotopically organized areas projecting to area 17 were very similar in controls and in operated animals (neonatal kainate lesion of the visual thalamus, neonatal section of the corpus callosum or both procedures combined). However, in operated animals, the labelled associational neurones projecting from the supragranular laminae (II/III) of area 18a to area 17 constituted a higher proportion of all cells than did those in the unoperated control animals. Thus, overall the number of associational neurones projecting from area 18a to area 17 was slightly increased by the experimental manipulations performed. The implications of these results concerning the mechanism(s) underlying the developmental changes in the distribution of commissural and associational neurones projecting to the rat's visual cortex are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...