Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The soft x-ray continuum radiation in tokamak fusion test reactor (TFTR) low-density neutral-beam discharges can be much lower than its theoretical value obtained by assuming a corona equilibrium. This reduced continuum radiation is caused by an ionization equilibrium shift toward lower states, which strongly changes the value of the average recombination coefficient of metallic impurities γ¯, even for only slight changes in the average charge Z¯. The primary agent for this shift is the charge exchange between the highly ionized impurity ions and the neutral hydrogen, rather than impurity transport, because the central density of the neutral hydrogen is strongly enhanced at lower plasma densities with intense beam injection. In the extreme case of low-density, high neutral-beam power TFTR operation (energetic ion mode) the reduction in γ¯ can be as much as one-half to two-thirds. We calculate the parametric dependence of γ¯ and Z¯ for Ti, Cr, Fe, and Ni impurities on neutral density (equivalent to beam power), electron temperature, and electron density. These values are obtained by using either a one-dimensional impurity transport code or a zero-dimensional code with a finite particle confinement time. As an example, we show the variation of γ¯ and Z¯ in different TFTR discharges.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...