Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 10 (1998), S. 1742-1756 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The interactions of flows generated by ionic discharges with wall turbulence are not only of interest for turbulence control, but also for devices of industrial importance, such as wire-plate electrostatic precipitators (ESPs). Under conditions of uniform discharge, in wire-plate ESPs, arrays of regular, spanwise vortices are found in the absence of a through-flow. These arise from ionic discharges from the spanwise wires placed between the grounded plates on each side. The interactions of such electrohydrodynamic (EHD) flows with a turbulent through-flow are still poorly understood. Direct numerical simulation (DNS) is an attractive method for investigating such problems since the details of the interactions can be unraveled, and the results are directly applicable to industrial-scale systems because their Reynolds numbers are typically quite low. In this study, pseudospectral channel flow simulations were performed with the electrohydrodynamic effects being modeled by a spatially varying body-force term in the equations of fluid motion. The interactions between EHD flows and wall structures were elucidated by examining the instantaneous structure of the flow field. Results indicate that the mean flow, the EHD flows, and the turbulence field undergo significant modifications caused by mutual interaction. First, it is found that EHD flows reduce drag, allowing larger flow rates for a given pressure drop. Second, the EHD flows themselves appear weakened by the presence of the through-flow, particularly in the central region of the channel. The EHD flows affect the turbulence field by both increasing dissipation and turbulence production, the overall turbulence level being determined by the balance between the increased dissipation and production. Even though high EHD flow intensities may increase streamwise and wall-normal turbulence intensities, the Reynolds stress is reduced, consistent with the observed reduction in drag. From a mechanistic viewpoint, there are indications that EHD flows of the type investigated here reduce drag by decreasing the relative importance of the positive Reynolds stress contributions, i.e., second (ejections) and fourth (sweeps) quadrant events, compared to the negative Reynolds stress contributions, i.e., first and third quadrant events. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 39 (1993), S. 1910-1919 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The dispersion of particles in turbulent duct flow under the influence of electrostatic fields is studied using direct numerical simulation. In this new approach, particles are moved in the temporally and spatially varying turbulent flow field under the influence of electrostatic and gravitational body forces, as well as fluid dynamic drag. The simulations agree well with previously performed experiments (done in geometries typical of wire-plate and plate-plate electrostatic precipitators) not only in the overall collection efficiency of particles, but in particle concentration profiles at various axial locations in the flow direction. This gives confidence in the technique that may be used to study different precipitator geometries and flow field configurations, supplementing costly and difficult experiments. Furthermore, information is obtained at a much more detailed level than is possible via experiments, allowing insights into the mechanisms dominating particle collection.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 737-740 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 1403-1413 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Industrial design of electrostatic precipitators is based on the transport theory developed by Deutsch (1922), which assumes that transverse turbulent mixing is effective enough to maintain the concentration profile uniform throughout the cross section (i.e., turbulent diffusivity is assumed infinite). To improve understanding of turbulent particle dispersion under the influence of electrostatic forces, a database on particle trajectories was first generated, based on the flow field from a direct numerical simulation of a plate-plate precipitator (Soldati et al., 1993). The effect of various parameters, such as particle size, charge and particle migration velocity, on dispersion and collection efficiency was investigated. Results show that particle concentration profiles are not uniform due to finite values of “turbulent diffusion” coefficient. The simulations indicate that the early stages of particle collection are controlled by particle migration velocity, while final stages are controlled by turbulence diffusion mechanisms.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...