Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Human genetics 〈Berlin〉 96 (1995), S. 113-115 
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Four cases of Crouzon syndrome, one familial and three sporadic, were investigated for mutations in exon B of the fibroblast growth factor receptor 2 (FGFR2) gene. In the familial case, a mutation was found at codon 340 that exchanged tyrosine for histidine. Mutations at codon 342, detected in the three sporadic cases, replaced a cysteine by another amino acid. While three of the mutations have been described before, the fourth mutation, a C→G transversion at codon 342 in one of the sporadic cases, has not been recognized previously. Compilation of all exon B mutations in Crouzon syndrome described to date revealed that 6 of the 8 sporadic and 2 of the 9 familial cases have mutations in codon 342. These mutations caused the substitution of cysteine for another amino acid. Given that a mutation in codon 342 was found in 8 out of 17 cases and that in 9 cases the mutation occurred at five additional positions, codon 342 of exon B of the FGFR2 gene may be predisposed to mutations in Crouzon syndrome.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Neurogenetics 2 (1999), S. 167-170 
    ISSN: 1364-6753
    Keywords: Key words Paraganglioma ; PGL1 ; PGL2 ; PGL3 ; Parasympathetic ganglia ; Glomus tumor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: ABSTRACT Paragangliomas (glomus tumors) are slowly growing, mostly benign tumors of the parasympathetic ganglia which most frequently occur in the head and neck region. Between 10% and 50% of cases are familial and follow an autosomal dominant mode of inheritance. The trait is maternally imprinted and exclusively transmitted through the paternal line. To date, two loci have been implicated in this disorder: one at 11q23 (PGL1), the other one at 11q13 (PGL2). We have analyzed a large German family with hereditary paraganglioma, but no evidence of maternal imprinting. By linkage analysis with markers flanking both PGL1 and PGL2, we demonstrate that the trait does not segregate with either of the loci at 11q. Our findings show that a third locus, PGL3, can be involved in hereditary paraganglioma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Neurogenetics 1 (1998), S. 165-177 
    ISSN: 1364-6753
    Keywords: Key words Primary dystonia ; Dystonia parkinsonism syndromes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: ABSTRACT Primary dystonias are movement disorders with dystonia as a major symptom. They are frequently inherited as Mendelian traits. There are at least eight clinically distinct autosomal dominant and two X-linked recessive forms. In addition, pedigree analyses suggest the occurrence of an autosomal recessive variant. The clinical classification is increasingly being replaced by a genetic one. To date gene loci have been identified in at least six autosomal dominant forms, i.e., in idiopathic torsion dystonia (9q34), focal dystonia (18p), adult-onset idiopathic torsion dystonia of mixed type (8p21-q22), dopa-responsive dystonia (14q22.1-q22.2), and paroxysmal dystonic choreoathetosis (2q25-q33; 1p21-p13.3). Gene loci in the X-linked recessive forms have been assigned to Xq13.1 in the X-linked dystonia parkinsonism syndrome and to Xq22 in X-linked sensorineural deafness, dystonia, and mental retardation. The disease genes have been identified in two autosomal dominant forms and in one X-linked recessive form. Mutations in a gene coding for an ATP-binding protein were detected in idiopathic torsion dystonia (DYT1), and the GTP cyclohydrolase 1 gene is mutated in dopa-responsive dystonia (DYT5). In sensorineural deafness, dystonia, and mental retardation, mutations were found in the gene DDP coding for a polypeptide of unknown function. This article reviews the clinical and molecular genetics of primary dystonias, critically discusses present findings, and proposes referring to the known forms, most of which can be distinguished by genetic criteria, as dystonias 1–12.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Exons 5 and 7 of the fibroblast growth factor receptor 2 (FGFR2) gene code for immunoglobulin-like domain III (IgIII) and for the region connecting the second and the third Ig domain of the receptor. Numerous mutations in these two exons have been shown to cause various craniosynostotic syndromes. Here, we describe three previously unrecognized mutations at amino acid positions 276, 301, and 314, in one nonspecific craniosynostosis and in two Crouzon patients. We also present a polypeptide model of IgIII of FGFR2. The known mutations involve five distinct structural elements of the receptor. The changes within these elements affect receptor function by various mechanisms, including altered dimerization, truncation, increased mobility between Ig domains, disintegration of IgIII, and alteration of the ligand-binding site.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Graefe's archive for clinical and experimental ophthalmology 235 (1997), S. 545-550 
    ISSN: 1435-702X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract This article reviews recent molecular genetic findings in autosomal dominant craniosynostotic syndromes. A mutation in the homeotic geneMSX2 was the first genetic defect identified in an autosomal dominant primary craniosynostosis, i.e. in craniosynostosis type 2 (Boston type). In the more common syndromes of Crouzon, Pfeiffer, Jackson-Weiss, and Apert, mutations were found in the gene coding for fibroblast growth factor receptor (FGFR) 2. Less frequently, mutations are observed in FGFRI and FGFR3 in some cases of Crouzon and Pfeiffer syndrome. The mutations identified in FGFR2 are located in exons 5 and 7 of the gene that code for immunoglobulin (Ig)-like chain III and the region linking Ig II and Ig III of the receptor. These domains of the receptor are important for ligand binding. Apart from Apert syndrome, identical mutations are found in the clinically distinct syndromes of Crouzon, Pfeiffer, and Jackson-Weiss. Furthermore, the same gene defect can result in a highly variable phenotype even within one family. Therefore, the clinically distinct craniosynostotic syndromes are extremes of a spectrum of craniofacial abnormalities and not nosologic entities. In Saethre-Chotzen syndrome, the gene coding for transcription factorTWIST is mutated. The disease genes identified in craniosynostotic syndromes to date either regulate transcription or are required for signal transduction and play a central role in the development of the calvarial sutures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...