Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Notes: Diamond-like carbon (DLC) films were deposited on stainless steel disc substrates by plasma immersion ion implantation and deposition (PIII&D) technique. Ar, CH4 and C2H2 gas were used as the working gases and discharged by radio frequency at 13.56 MHz. During the implantation and deposition process the plasma discharge was monitored by optical emission spectroscopy in order to analyze the state of the chemical species presented in the plasma. Ion implantation (Vbias = -20 kV and –10 kV) process served to produce a graded interface between the DLC films and the substrate material. Deposition (Vbias = -5 kV) process using a gas mixture of C2H2/Ar with a ratio of 1:1. The structure information of the DLC films was evaluated by Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). The composition of the DLC films and the thickness was measured by Rutherford backscattering spectrometry (RBS). The tribological properties were analyzed using a pin-on-disk tribometer and a microhardness tester, respectively. It was found that the DLC film was 0.8 μm thick with a hardness of 2.54 GPa and had good friction properties. Raman spectra appeared as G-band and D-band centered at 1550 cm-1 and 1418 cm-1, respectively. FTIR analysis observed the sp3 C=H2 asymmetric and sp2 C=C bond at 2928.73 cm-1 and 1667.10 cm-1 peak
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 2158-2161 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Measurements of the electron energy distribution function (eedf) of a low-pressure inductively coupled plasma operated in a mixture of Ar and CF4 are reported. The measurement method was laser Thomson scattering. Extensive test were performed in order to verify that any perturbations caused by the laser did not affect the measurements. The eedf was measured for different concentrations of CF4 gas, and the results indicated that it was non-Maxwellian when even small amounts of CF4 gas were present. This dependence was attributed partially to the effect of electron-molecule vibrational excitation collisions. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...