Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Neuroleptics are thought to exert their anti-psychotic effects by counteracting a hyper-dopaminergic transmission. Here, we have examined the dopaminergic status of STOP (stable tubule only polypeptide) null mice, which lack a microtubule-stabilizing protein and which display neuroleptic-sensitive behavioural disorders. Dopamine transmission was investigated using both behavioural analysis and measurements of dopamine efflux in different conditions. Compared to wild-type mice in basal conditions or following mild stress, STOP null mice showed a hyper-locomotor activity, which was erased by neuroleptic treatment, and an increased locomotor reactivity to amphetamine. Such a behavioural profile is indicative of an increased dopaminergic transmission. In STOP null mice, the basal dopamine concentrations, measured by quantitative microdialysis, were normal in both the nucleus accumbens and the striatum. When measured by electrochemical techniques, the dopamine efflux evoked by electrical stimulations mimicking physiological stimuli was dramatically increased in the nucleus accumbens of STOP null mice, apparently due to an increased dopamine release, whereas dopaminergic uptake and auto-inhibition mechanisms were normal. In contrast, dopamine effluxes were slightly diminished in the striatum. Together with previous results, the present study indicates the association in STOP null mice of hippocampal hypo-glutamatergy and of limbic hyper-dopaminergy. Such neurotransmission defects are thought to be central to mental diseases such as schizophrenia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Neurotensin is a tridecapeptide neurotransmitter known to be involved in psychiatric disorders, various physiological processes and several different neurobiological mechanisms, including modulation of accumbal dopamine release. Two neurotensin extracellular binding sites, namely NT1- and NT2-receptor (NT1R and NT2R), have been cloned from the rat brain. These receptors are distinguishable by their different in vitro pharmacological properties but the available pharmacological tools have weak in vivo potency and specificity. The use of genetically engineered knock-out mice has provided a powerful alternative to the classical pharmacological approach to investigate their respective roles. In this study, using in vivo differential pulse amperometry, we show that, in wild-type mice, neurotensin application into the ventral tegmental area dose-dependently evokes dopamine efflux in the nucleus accumbens. This neurotensin-mediated efflux is dramatically decreased in mice lacking NT1R while it is unaffected in NT2R-deleted mice. This finding indicates that a large part of the dopamine efflux evoked by neurotensin in the nucleus accumbens of wild-type mice is mediated via NT1R present in the ventral tegmental area.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1912
    Keywords: Key words Amperometry ; Autoreceptors ; D2-type receptors ; Dopamine ; Haloperidol ; Striatum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The dopamine overflow evoked by trains of electrical stimulation pulses applied to the ascending dopaminergic pathway was measured with continuous amperometry in the striatum of anesthetised rats. As previously observed in in vitro studies, a pulse by pulse analysis showed a fall in dopamine overflow evoked by pulses 2 to 6, compared to the response evoked by pulse 1. However, in contrast with in vitro findings, the present in vivo data showed that the dopamine receptor antagonist haloperidol i) completely reverses the fall in dopamine overflow between pulse 1 and subsequent pulses, ii) enhances the dopamine overflow elicited by pulse 1. These results suggest that in vivo, both basal and pulse-evoked dopamine overflow results in stimulation of dopamine D2-type autoreceptors and therefore in regulation of dopamine release.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...