Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Archives of Biochemistry and Biophysics 307 (1993), S. 217-223 
    ISSN: 0003-9861
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Archives of Biochemistry and Biophysics 302 (1993), S. 103-108 
    ISSN: 0003-9861
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular 786 (1984), S. 231-244 
    ISSN: 0167-4838
    Keywords: (Chicken intestinal mucosa) ; Enzyme kinetics ; Nucleoside phosphotransferase ; Subunit association
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0014-5793
    Keywords: Development ; Glucocorticoid ; Nucleoside phosphotransferase ; Retina ; Thymidine kinase
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1600-079X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Antioxidant activity of melatonin in human erythrocytes, exposed to oxidative stress by cumene hydroperoxide (cumOOH), was investigated. CumOOH at 300 μM progressively oxidized a 1% suspension of red blood cells (RBCs), leading to 100% hemolysis in 180 min. Malondialdehyde and protein carbonyls in the membrane showed a progressive increase, as a result of the oxidative damage to membrane lipids and proteins, reaching peak values after 30 and 40 min, respectively. The membrane antioxidant vitamin E and the cytosolic reduced glutathione (GSH) were totally depleted in 20 min. As a consequence of the irreversible oxidative damage to hemoglobin (Hb), hemin accumulated into the RBC membrane during 40 min. Sodium dodecyl sulfate (SDS) gel electrophoresis of membrane proteins showed a progressive loss of the cytoskeleton proteins and formation of low molecular weight bands and protein aggregates, with an increment of the intensity of the Hb band. Melatonin at 50 μM strongly enhanced the RBC resistance to oxidative lysis, leading to a 100% hemolysis in 330 min. Melatonin had no effect on the membrane lipid peroxidation, nor prevented the consumption of glutathione (GSH) or vitamin E. However, it completely inhibited the formation of membrane protein carbonyls for 20 min and hemin precipitation for 10 min. The electrophoretic pattern provided further evidence that melatonin delayed modifications to the membrane proteins and to Hb. In addition, RBCs incubated for 15 min with 300 μM cumOOH in the presence of 50 μM melatonin were less susceptible, when submitted to osmotic lysis, than cells incubated in its absence. Extraction and high-performance liquid chromatography (HPLC) analysis showed a much more rapid consumption of melatonin during the first 10 min of incubation, then melatonin slowly decreased up to 30 min and remained stable thereafter. Equilibrium partition experiments showed that 15% of the melatonin in the incubation mixture was recovered in the RBC cytosol, and no melatonin was extracted from RBC membrane. However, 35% of the added melatonin was consumed during RBC oxidation. Hydroxyl radical trapping agents, such as dimethylsulfoxide or mannitol, added into the assay in a 1,000 times molar excess, did not vary melatonin consumption, suggesting that hydroxyl radicals were not involved in the indole consumption. Our results indicate that melatonin is actively taken up into crythrocytes under oxidative stress, and is consumed in the defence of the cell, delaying Hb denaturation and release of hemin. RBCs are highly exposed to oxygen and can be a site for radical formation, under pathological conditions, which results in their destruction. A protective role of melatonin should be explored in hemolytic diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1600-079X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The interaction of melatonin with water containing either sodium bis (2-ethylhexyl) sulfosuccinate (AOT) or soybean phosphatidylcholine (lecithin) reversed micelles has been investigated by UV absorption spectroscopy, at a molar ratio of melatonin: surfactant 1: 800 for AOT and 1: 400 for lecithin reversed micelles, and by varying the water:surfactant molar ratio (R). Our results suggest that in the presence of domains from apolar organic solvent to surfactant and to water, melatonin positions itself in the micellar phase, with a preferential location in the surfactant polar head group domain, independent of the nature of the surfactant and the amount of water encapsulated into the micellar core. Effects are due to the hydrophilic and lipophilic moieties of melatonin. The effectiveness of melatonin as an electron donor and free radical scavenger has been recently recognized. While supporting the hypothesis that melatonin may provide antioxidant protection without the benefit of receptors, present findings may suggest that the molecule could easily scavenge aqueous as well as lipophilic radicals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Publishing Ltd
    Journal of pineal research 32 (2002), S. 0 
    ISSN: 1600-079X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Malondialdehyde (MDA), a by-product of the oxidation of polyunsaturated fatty acids, is strongly cytotoxic. Here we report the in vitro ability of melatonin to protect intact human erythrocytes against the damage induced by the exposure to MDA. MDA at 20 μM caused marked variations in the red blood cell (RBC) membrane. High molecular weight fluorescent adducts were formed within minutes with membrane proteins. A 6-hr incubation led to the oxidation of membrane lipids, as reflected by the formation of conjugated diene (CD) lipid hydroperoxides and oxidation of vitamin E, and to an increase of the high molecular weight fluorescent adducts, which were an indication of MDA finally generated in the cells. Functional damage to the membrane was evident as a leakage of K+ ions into the incubation medium, and an increased resistance to osmotic lysis. A time-dependent hemolysis was observed by exposure of RBCs to 20 μM MDA for 6–12 hr. Melatonin was not a substrate for MDA, therefore it was not able to prevent the early formation of the adducts from the reaction of the MDA in the medium with membrane proteins. Melatonin, however, concentration-dependent prevented the formation of CD lipid hydroperoxides. As a consequence of counteracting the membrane lipid oxidation, the indoleamine prevented the loss of vitamin E and the increase of the fluorescent proteinaceous adducts observed after a 6-hr exposure to MDA. Melatonin also inhibited the K+ loss and returned to normal the osmotic resistance of the erythrocyte in the osmotic fragility test. By protecting membrane lipids and proteins, melatonin effectively prevented the MDA-induced time-dependent hemolysis. In the light of the known radical scavenging properties of melatonin, mechanisms of the cytoprotective effects of melatonin in our system are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Munksgaard International Publishers
    Journal of pineal research 34 (2003), S. 0 
    ISSN: 1600-079X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Melatonin has been shown to be an effective antioxidant in a number of experimental models both in vitro and in vivo. Considering the data available, it is now clear that the indoleamine is involved in antioxidative mechanisms more complex than originally envisaged. These range from the direct radical scavenging of a variety of radicals and reactive species to the control and/or modulation of a number of processes which may trigger a redox imbalance between antioxidant and prooxidant species. This review focuses on the direct radical scavenging activity of melatonin and provides a summary of the mechanisms of the reactions between the indoleamine and reactive species in pure chemical solutions. These actions likely account for at least some of the protective actions of melatonin under conditions of high oxidative stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1600-079X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Melatonin has been shown to act as a radical scavenger in various chemical and biological model systems in vitro. Kinetic evidence is now provided showing that melatonin inhibits the irreversible degradation of hemoglobin (Hb), when incubated with red blood cells exposed to the oxidant activity of cumene hydroperoxide (cumOOH). A decrease of heme loss and accumulation of soluble methemoglobin (met-Hb) are explained in terms of the interaction of the indoleamine with perferryl Hb (⋅Hb[FeIV=O]), a highly reactive Hb-derived radical species responsible for the irreversible Hb degradation. A kinetic study, in pure chemical solution, showed that melatonin can effectively reduce the oxoferryl heme group of perferryl-Hb, thus forming met-Hb. The reducing activity of melatonin is of the same order as that of Trolox, the water-soluble vitamin E analog. This novel radical-scavenging activity of melatonin may contribute to the previously observed protective effects of melatonin in ischemia-reperfusion injury.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1420-9071
    Keywords: CRALBP ; 11-cis retinaldehyde ; retinal pigment epithelium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary 11-cis retinaldehyde binding analysis was performed on a bovine retinal pigment epithelium preparation of cellular retinaldehyde binding protein (CRALBP), whose purity degree was estimated as 75%. Equilibrium binding studies were carried out measuring the replacement of tritium-labeled with unlabeled 11-cis retinaldehyde at 25°C. Analysis of the experimental data both by a direct curve-fitting procedure utilizing a non linear least square regression analysis and by a conventional Scatchard plot revealed a single non-interacting binding site with an apparent equilibrium constant of 0.9×10−7 M. A binding stoichiometry of approximately 1 mol of 11-cis retinaldehyde/mol of binding protein can be calculated from the experimental data. Competition studies carried out in the presence of unlabeled ‘trans’ and ‘cis’ isomers of Vitamin A derivatives confirm the high degree of specificity of the 11-cis retinaldehyde binding.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...