Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 243-244 (July 2003), p. 601-606 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 306-308 (Mar. 2006), p. 1277-1282 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Bone is a complex system with adaptation and repair functions. To understand how bone cells can create a structure adapted to the mechanical environment, we proposed a simple bone remodeling model, iBone, based on a reaction-diffusion system [1]. A 3-dimensional mandibular bone model consisting of approximately 1.4 million elements was constructed from sequential computer tomography (CT) images of a 14-year old female. Both teeth and bone were modeled withisoparametric voxel elements with Young's Modulus = 20 GPa and Poisson's ratio = 0.3. Both heads of the mandible were fixed allowing rotation and horizontal movement. Teeth were fixed vertically allowing horizontal movements. Incisor, right/left group, and right/left molar biting conditions were simulated. The locations and directions of muscles, and their forces were predicted from the CTimages. Remodeling simulation was performed by 10 sets of finite element method analysis and reaction-diffusion remodeling simulation to obtain internal structure adapted to each loading condition. As a result, the major part of the corpus of the simulated mandibular bone showed similar internal structures under different biting conditions. Moreover, these simulated structures were satisfactorily similar to that of the real mandible. Computer simulation of three-dimensional bonestructures based on CT images will be very useful for understanding the patho-physiological state of bone under various mechanical conditions, and may assist orthopedic doctors to predict the risk and efficacy of surgical therapies
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-5604
    Keywords: bone resorption ; osteoclast ; TGF-β1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Transforming growth factor-β1 (TGF-β1) has biological functions in various types of cells. However, its roles in the regulation of osteoclast formation and function are unclear. To examine them, we employed a culture system in which unfractionated cells obtained from long bones of 13-day-old mice were cultured on a dentine slice. We found that TGF-β1 has a potent inhibitory effect on osteoclastic bone resorption at a dose of 0.2–5 ng/ml. By electron microscopy the osteoclasts appeared to have fewer mitochondria and ruffled borders than those in control cultures. But in the presence of 1,25-dihydroxyvitamin D3, [1,25-(OH)2D3], TGF-β1 at a dose of 0.2–1 ng/ml stimulated the formation of osteoclasts from unfractionated bone cell cultures in which preexistent osteoclasts had degenerated. Thus, using stromal cell-free he-mopoietic blast cells, we examined the direct action of TGF-β1 on osteoclast precursors. Although TGF-β1 inhibited tartrate-resistant acid phosphatase-positive (TRAP) multinucleate cell (MNC) formation induced by 1,25-(OH)2D3, the conditioned medium (CM) of TGF-β1-treated MC3T3-E1 cells stimulated such formation. These results suggest that TGF-β1 inhibits osteoclastic bone resorption but stimulates osteoclast formation via the action of factor(s) produced by TGF-β1-treated osteoblasts in the presence of 1,25-(OH)2D3.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We examined the relationship between signal transduction and the expression of insulin-like growth factor I (IGF-I), IGF-I receptor level, and IGF binding proteins (IGFBPs) in murine clonal osteoblastic MC3T3-E1 cells. 12-O-Tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, decreased the secretion of immunoreactive IGF-I into the medium, whereas dibutyryl cAMP (Bt2cAMP) augmented the secretion In contrast, TPA increased the level of type IIGF receptor on the cells. Furthermore, MC3T3-E1 cells produced and secreted at least three different IGFBPs with molecular masses of 24, 30, and 34 kDa, and the 24-kDa IGFBP was predominant under normal conditions. However, TPA specifically increased the secretion of the 34-kDa IGFBP. The N-terminal amino acid sequence of the purified 34-kDa IGFBP was nearly identical with that of rat IGFBP-2. Furthermore, the 34-kDa IGFBP was immunoreactive to anti-IGFBP-2 antiserum. The level of IGFBP-2 mRNA in the cells was increased by TPA, indicating that the increase in IGFBP-2 secretion results from the stimulation of IGFBP-2 production. In contrast, Bt2cAMP affected neither IGF-l receptor number nor the IGFBP secretion. These results indicate that the production of IGF-l and the expression of IGF-l receptors and IGFBP-2 are up-regulated by the activation of adenylate cyclase and protein kinase C, respectively, in osteoblastic MC3T3-E1 cells. © 1994 Willey-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Osteoclast formation from hemopoietic precursors has been shown to require the support of stromal cells in bone tissue. In this study, we demonstrated that hepatocyte growth factor (HGF) is one of the stromal cell-derived molecules responsible for osteoclast-like cell formation. For our experimens, we used a coculture system for osteoclastic cell formation and activation in which hemopoietic blast cells are cocultured with calvaria-derived stromal MC3T3-G2/PA6 (PA6) cells on dentine slices in the presence of 1, 25-dihydroxyvitamin D3 [1,25(OH)2D3]. Addition of anti-HGF neutralizing IgG to the cocultures inhibited the formation of osteoclastic cells and their dentine-recorbing activity. We detected a single 6.0-kb transcript for HGF in PA6 cells, and also recognized immunoreactive Mr. 81,000 and 88,000 forms of HGF in conditioned medium (CM) from PA6 cell cultures, the level of which reached 6 ng/ml. Both the CM and HGF stimulated the proliferation of blast cells synergistically with granulocyte-macrophage colony-stimulating factor, resulting in an increased number of osteoclast precursors that respond to 1,25(OH)2D3 that are tartrate-resistant acid phosphatase-positive multinucleate cells in stromal cell-free blast cell cultures in plastic wells. The effect of the CM was diminished by the addition of anti-HGF IgG. However, neither the CM nor HGF stimulated the formation of osteoclastic cells and pits on dentine slices in the absence of PA6 cells. These results suggest that although HGF cannot completely replace stromal cells, it is one of the paracrine mediators produced by stromal cells that act on proliferation of osteoclastic cell precursors. © 1995 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...