Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Key words Astrocytoma ; Epidermal growth factor ; receptor ; Glioma ; p53 ;  Loss of heterozygosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Pleomorphic xanthoastrocytoma (PXA) is a low-grade glioma that may recur as a malignant diffuse astrocytoma such as glioblastoma (GBM). While the molecular genetic basis of diffuse astrocytomas has been studied extensively, PXAs have not been analyzed in detail. We, therefore analyzed DNA from archival primary and recurrent PXAs from eight patients (three grade II PXAs without recurrence, one grade II PXA with recurrence as grade II PXA, two grade II PXAs with progression to GBM, and two grade III anaplastic PXAs with recurrence as grade III anaplastic PXA or GBM) for genetic changes associated with diffuse astrocytomas. Single-strand conformation polymorphism analysis of p53 exons 5–8 revealed migration shifts in two cases, one primary PXA without recurrence and one recurrent grade II PXA in which the primary tumor did not show a shift. DNA sequencing showed two missense mutations in codons 220 (exon 6) and 292 (exon 8), respectively, mutations which have not been previously noted in astrocytomas. Differential polymerase chain reaction analysis demonstrated epidermal growth factor receptor gene amplification in only one tumor, a GBM without allelic loss of chromosome 10 that was the second GBM recurrence of an initial grade II PXA. Loss of heterozygosity studies on tumors from five patients, using three microsatellite polymorphisms on chromosome 10q and three on chromosome 19q, did not disclose allelic loss in any recurrent tumor. These findings suggest that the genetic events that underlie PXA formation and progression may differ significantly from those involved in diffuse astrocytoma tumorigenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-7373
    Keywords: ECR expression ; glioblastoma ; melanoma ; serum free medium ; migration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Local tumor invasion into the surrounding brain tissue is a major characteristic of malignant gliomas. These processes critically depend on the interaction of tumor cells with various extracellular matrix (ECM) components. Because only little quantitative information about expression of ECM gene products in general and expression in response to alterations of the surrounding environment is available, the present study was designed. Four human glioblastoma cell lines (U373MG, U138MG, U251MG, GaMG) as well as four human melanoma cell lines (MV3, BLM, 530, IF6) were tested with semiquantitative RT-PCR for their ability to express mRNA of different human ECM components (fibronectin, decorin, tenascin, collagen I, collagen IV, versican). In addition, two human medulloblastoma (MHH-Med 1, MHH-Med 4) and two fibrosarcoma (HT1080, U2OS) cell lines were analyzed. Cells which were grown in DMEM medium containing 10% FCS expressed most of the analyzed protein components. When the same medium, but depleted of ECM proteins by filtrating through a membrane with cut-off at 〉100 kD was used, basal mRNA expression of the ECM proteins was changed in most of the examined cell lines. Using serum free conditions, most of the cell lines again showed a variation in the expression pattern of mRNA encoding for the different ECM proteins compared to the other medium conditions. Comparing different cell lines from one tumor entity or different tumor groups, ECM expression was heterogeneous with regard to the different tumor entities as well as within the entities themselves. Migration assays revealed heterogeneous responses between the different cell lines, ECM components and culture conditions, making it difficult to correlate ECM expression patterns and migratory behavior. Our results revealed that all examined cell lines are able to produce ECM proteins in vitro. This suggests that tumor cells can modulate their microenvironment in vitro which has to be taken into consideration for studies related to migration and invasion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neuro-oncology 24 (1995), S. 87-91 
    ISSN: 1573-7373
    Keywords: astrocytoma ; extracellular matrix ; glioblastoma ; infiltration ; integrins ; invasion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The communication between tumor cells and extracellular matrix (ECM) is responsible for clinically important features of malignant gliomas, such as cerebral invasion and leptomeningeal spread. The synthesis of ECM components, ECM-degrading activities and ECM receptors as well as the interaction between ECM components and their receptors represents the molecular basis for these processes. Recent studies have shown that proteases and integrins, the major group of ECM receptors, may be over-expressed by astrocytic tumor cells. Furthermore, integrins and the hyaluronate receptor CD44 have been found to be involved in adhesion and basement membrane invasion of glioma cells. Critical issues which are poorly understood so far include the ECM composition of the normal human brain and of brain tumors, the function of individual ECM components and receptors in a neuro-oncological context, and the molecular processes mediating the diffuse invasion of glioma cells into the brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...