Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 88-96 
    ISSN: 0006-3592
    Keywords: molybdenum ; uranium ; immobilized cells ; dissimilatory reduction ; Desulfovibrio ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Intact cells of Desulfovibrio desulfuricans were immobilized in polyacrylamide gel and used to remove soluble U and Mo from water by enzymatically mediated reduction reactions in column reactors. Formate or lactate served as the electron donor and oxidized U(VI) and Mo(VI) species served as electron acceptors. Greater than 99% removal efficiencies were achieved for both metals with initial concentrations of 5 mg/L U and 10 mg/L Mo. Hydraulic residence times in the columns were between 24 and 36 h. Sulfate concentrations as high as 2000 mg/L did not inhibit reduction of U or Mo in the columns. However, nitrate inhibited uranium reduction at concentrations near 50 mg/L and inhibited molybdenum reduction at concentrations near 150 mg/L. The results indicate that enzymatic reduction of U and Mo by immobilized cells of D. desulfuricans may be a practical method for removing these contaminants from solution in continuous-flow reactors. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 88-96, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...