Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An auxiliary poloidal inductive electric field applied to a reversed-field pinch (RFP) plasma reduces the current density gradient, slows the growth of m=1 tearing fluctuations, suppresses their associated sawteeth, and doubles the energy confinement time. This experiment attacks the dominant RFP plasma loss mechanism of parallel streaming in a stochastic magnetic field. The auxiliary electric field flattens the current profile and reduces the magnetic fluctuation level. Since a toroidal flux change linking the plasma is required to generate the inductive poloidal electric field, the current drive is transient to avoid excessive perturbation of the equilibrium. To sustain and enhance the improved state, noninductive current drivers are being developed. A novel electrostatic current drive scheme uses a plasma source for electron injection, and the lower-hybrid wave is a good candidate for radio-frequency current drive. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 648-657 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A computer code package has been developed to simulate the linear and nonlinear evolution of long-wavelength resistive magnetohydrodynamic (MHD) instabilities in a four-node poloidal divertor tokamak (e.g., Wisconsin Tokapole II [Nucl. Fusion 19, 1509 (1979)]). Distinguishing features of this package include the use of a full set of three-dimensional (3-D) nonlinear resistive MHD equations and the inclusion of the divertor separatrix and the plasma outside the divertor separatrix in the computational domain. The present numerical results suggest that the plasma current outside the divertor separatrix tends to linearly stabilize the resistive MHD instability dominated by the m=2, n=1 mode, and, to a lesser extent, that dominated by the m=1, n=1 mode. (Here, m and n are poloidal and toroidal mode numbers, respectively.) However, the nonlinear evolution of the m=1, n=1 dominant instability is not significantly affected by the divertor configuration; the m=1, n=1 island is shown to reconnect totally by developing a large region of magnetic stochasticity. Hence, the cause of the partial reconnection observed in Tokapole II seems to lie beyond the scope of the classical resistive MHD model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 3517-3519 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Current drive using the lower-hybrid slow wave is shown to be a promising candidate for improving confinement properties of a reversed field pinch. Ray-tracing calculations indicate that the wave will make a few poloidal turns while spiraling radially into a target zone inside the reversal layer. The poloidal antenna wavelength of the lower hybrid wave can be chosen so that efficient parallel current drive will occur mostly in the poloidal direction in this outer region. Three-dimensional resistive magnetohydrodynamic computation demonstrates that an additive poloidal current in this region will reduce the magnetic fluctuations and magnetic stochasticity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 134 (1991), S. 111-121 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A Kelvin-Helmholtz instability has been identified numerically on an azimuthally symmetric Alfvén resonant layer in an axially bounded, straight cylindrical coronal loop. The physical model employed is an incompressible, reduced magnetohydrodynamic (MHD) model including resistivity, viscosity, and density variation. The set of equations is solved numerically as an initial value problem. The linear growth rate of this instability is shown to be approximately proportional to the Alfvén driving amplitude and inversely proportional to the width of the Alfvén resonant layer. It is also shown that the linear growth rate increases linearly with m - 1 up to a certain m, reaches its maximum value for the mode whose half wavelength is comparable to the Alfvén resonant layer width, and decreases at higher m's. (m is the azimuthal mode number.)
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...