Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 475-490 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The nonlinear time-dependent equations of resistive magnetohydrodynamics are solved in simply connected domains to investigate spheromak formation and sustainment with electrostatic current drive. Spheromak magnetic fields are generated in three-dimensional computations as the nonlinear state resulting from an unstable pinch. Perturbations convert continuously supplied toroidal magnetic flux into poloidal magnetic flux, leading to "flux amplification" of field embedded in the electrodes. Relaxation of the axisymmetric component of the parallel current profile can be substantial, and the final nonlinear state is steady over a wide range of parameters. However, for sufficiently large values of Lundquist number or sufficiently large applied potential, nonsteady final states are observed with periodic relaxation events in some cases. Under most conditions, the saturated configuration exhibits chaotic scattering of the magnetic field lines. Conditions just above the marginal point of pinch instability sustain large closed flux surfaces in steady state; a weakly kinked pinch current threads the toroidal region of closed flux surfaces and imposes stellarator-like helical transform. Closed flux surfaces also form during decay, due to reduced fluctuation levels and average toroidal current driven directly by inductive electric field.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 1038-1046 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Magnetohydrodynamic (MHD) computations of direct current (DC) helicity injection for tokamak-like configurations show current drive with no "loop voltage'' in a resistive, pressureless plasma. Self-consistently induced, hollow current profiles are unstable to resistive modes that partially relax the profile through the MHD dynamo mechanism. The resulting current profiles remain quite hollow, however, and tokamaks are not generated. The current driven by the fluctuations leads to closed contours of average poloidal flux, but the 1% fluctuation level is large enough to produce a region of stochastic magnetic field. A limited Lundquist number (S) scan from 2.5×103 to 2×104 indicates that both the fluctuation level and current profile relaxation increase with S. A simple quasilinear power scaling is consistent with these results at low S and suggests that at larger S, the fluctuation level decreases. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An auxiliary poloidal inductive electric field applied to a reversed-field pinch (RFP) plasma reduces the current density gradient, slows the growth of m=1 tearing fluctuations, suppresses their associated sawteeth, and doubles the energy confinement time. This experiment attacks the dominant RFP plasma loss mechanism of parallel streaming in a stochastic magnetic field. The auxiliary electric field flattens the current profile and reduces the magnetic fluctuation level. Since a toroidal flux change linking the plasma is required to generate the inductive poloidal electric field, the current drive is transient to avoid excessive perturbation of the equilibrium. To sustain and enhance the improved state, noninductive current drivers are being developed. A novel electrostatic current drive scheme uses a plasma source for electron injection, and the lower-hybrid wave is a good candidate for radio-frequency current drive. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 3517-3519 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Current drive using the lower-hybrid slow wave is shown to be a promising candidate for improving confinement properties of a reversed field pinch. Ray-tracing calculations indicate that the wave will make a few poloidal turns while spiraling radially into a target zone inside the reversal layer. The poloidal antenna wavelength of the lower hybrid wave can be chosen so that efficient parallel current drive will occur mostly in the poloidal direction in this outer region. Three-dimensional resistive magnetohydrodynamic computation demonstrates that an additive poloidal current in this region will reduce the magnetic fluctuations and magnetic stochasticity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 503-504 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We agree that additional effects (toroidicity, Hall and rotamak effects, and Lundquist number scaling) will alter the physics and magnetohydrodynamic simulation of HIT experiments. Future research will clarify the importance of these effects. (AIP)
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Research on forming, compressing, and accelerating milligram-range compact toroids using a meter diameter, two-stage, puffed gas, magnetic field embedded coaxial plasma gun is described. The compact toroids that are studied are similar to spheromaks, but they are threaded by an inner conductor. This research effort, named marauder (Magnetically Accelerated Ring to Achieve Ultra-high Directed Energy and Radiation), is not a magnetic confinement fusion program like most spheromak efforts. Rather, the ultimate goal of the present program is to compress toroids to high mass density and magnetic field intensity, and to accelerate the toroids to high speed. There are a variety of applications for compressed, accelerated toroids including fast opening switches, x-radiation production, radio frequency (rf) compression, as well as charge-neutral ion beam and inertial confinement fusion studies. Experiments performed to date to form and accelerate toroids have been diagnosed with magnetic probe arrays, laser interferometry, time and space resolved optical spectroscopy, and fast photography. Parts of the experiment have been designed by, and experimental results are interpreted with, the help of two-dimensional (2-D), time-dependent magnetohydrodynamic (MHD) numerical simulations. When not driven by a second discharge, the toroids relax to a Woltjer–Taylor equilibrium state that compares favorably to the results of 2-D equilibrium calculations and to 2-D time-dependent MHD simulations. Current, voltage, and magnetic probe data from toroids that are driven by an acceleration discharge are compared to 2-D MHD and to circuit solver/slug model predictions. Results suggest that compact toroids are formed in 7–15 μsec, and can be accelerated intact with material species the same as injected gas species and entrained mass ≥1/2 the injected mass.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...