Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 101 (1994), S. 111-117 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We describe the application of a recently developed two-dimensional nuclear magnetic resonance (2D NMR) technique, variable-angle correlation spectroscopy, to the analysis of molecular motions in complex unlabeled solids. This technique separates the broad anisotropic chemical shift line shapes of nuclei in a sample according to the isotropic shift of each site. It can therefore be used to characterize molecular reorientations by monitoring the changes that these processes introduce in the resolved powder patterns as a function of temperature. Using the 13C NMR anisotropies of dimethylsulfone as a test case, we explored the potential applications of following such an approach. It was found that in contrast to what happens in nonexchanging systems, the anisotropic line shapes resolved by the variable-angle technique on an exchanging solid are different from line shapes that at similar temperatures can be recorded from a nonrotating sample. An explanation for these differences is presented, and the complete theory required to extract kinetic and geometric information from the experimental 2D line shapes is introduced and illustrated with computer simulations. The capability of this approach to analyze motions in complex systems is further demonstrated with a natural-abundance 13C variable-temperature NMR analysis of L-tyrosine ethyl ester; a reorienting compound possessing up to 11 inequivalent carbon sites in the solid phase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...