Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 64-73 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In order to aid process development and address extendibility of ionized physical vapor deposition (IPVD) technology to future integrated circuit generations, an integrated model capable of simulating phenomena across the various length scales characteristic of these systems has been developed. The model is comprised of a two-dimensional equipment simulation, which relates process variables to characteristics of material fluxes to the wafer, and a three-dimensional Monte Carlo based feature scale model. The ion-surface interaction data required to model the surface processes is generated by a molecular dynamics based simulation. The integrated model is used to study the effect of various IPVD process parameters such as wafer bias, coil power, target power, and buffer gas composition on copper film profile inside a trench. Variations in film profile across the wafer are also examined. It is found that increasing the wafer bias results in an increase in the mean ion energy and the amount of sputtering inside the feature. This results in material transfer from the bottom of the feature to the sidewalls and faceting of the upper corners of the trench. Two variables, namely the total ion to Cu flux ratio (RI/N) and the mean ion energy, are found to play a crucial role in determining the effects of coil power and target power. Increasing the coil power enhances RI/N and slightly decreases the mean ion energy. This leads to more sputtering, and therefore a thicker film on the sidewalls relative to that on the bottom. Increase in target power causes RI/N to decrease, which decreases sputtering within the feature. Film profiles generally show evidence of enhanced sputtering as buffer gas ionization threshold decreases (He→Ne→Ar→Xe) for the gases considered. These variations can be explained in terms of two factors: Cu flux ionization fraction, which decreases with buffer gas ionization threshold, and mean ion energy, which increases with ionization threshold. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 3080-3083 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A repetitively pulsed copper vapor laser (510 and 578 nm) is used to machine an opaque polymer (polyimide-Vespel) and a transparent polymer (polymethylmethacrylate-Lucite). Lucite is machinable by coating the surface with an ink which is semi-opaque to the green and yellow laser light. The repetition rate of the laser was 10 kHz with approximately 0.35 mJ/pulse and 3.5 W average power at the copper vapor laser wavelengths for a pulse width of 40 ns. The copper vapor laser thermally loads the target, generating thermal waves and sound waves in the gas which are investigated using HeNe laser beam deflection. The gas adjacent to the target is heated to steady state on the order of 100–400 s. Above the etching threshold, at approximately 10 mJ/cm2/pulse, the target is rapidly machined: 2-mm-diam, 2-mm-deep holes are drilled in 300 s in Vespel. At higher fluences of 100–150 mJ/cm2/pulse in 760 Torr of air it takes 180 s to bore through a 2-mm-thick disk of Vespel. The machined surfaces of the two polymers are very different. Machined Vespel samples are charred and cratered, whereas the Lucite samples show evidence of melting with little charring. The machining of polymers by visible-light copper vapor lasers is being compared to UV photoablation by KrF excimer laser light in order to study thermal versus nonthermal etching mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 2902-2908 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The behavior of electron swarms in gases in time-varying ramp electric fields is investigated using a Monte Carlo simulation. In particular, we consider the case of swarms in chlorine gas. Swarm parameters as a function of instantaneous E/N(E is the electric field and N is the gas number density) for different dE/dt are determined. At higher dE/dt, all the parameters as a function of E/N are shifted to larger E/N when compared to the steady-state case. The drift velocity curve develops a peak which shifts to higher E/N and increases in magnitude as dE/dt is increased. Next, we pay attention to the definition of the swarm parameters, where the parameters derived from kinetic theory and by analogy to experiment are compared. For the high dE/dt cases, differences in the swarm parameters at the same E/N values are caused by the inertia of the electrons and their transient beam-like high drift velocity, while discrepancies due to the difference between the definitions in the kinetic theory and in the analogy to experiment appear significantly. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 62 (1991), S. 1776-1782 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Deflection of carbon dioxide and helium-neon laser beams has been used to measure plasma and neutral density gradients during the operating mode and after the shorting time of a long-pulse field-emission electron beam diode. Plasma density gradients of (1014–1015) cm−4 were observed throughout the diode during the final microsecond of the 2–3 μs electron beam pulse. The neutral density gradient was less than 1×1018 cm−4 during the electron beam pulse. Upon diode shorting, neutral density gradients increased to (1018–1019) cm−4 over ∼1 μs, and decayed over many microseconds. Plasma density gradients of ∼1015 cm−4 were also observed after shorting. These experiments demonstrate the value of carbon-dioxide laser and helium-neon laser deflection for diagnosing plasma and neutral particles in long-pulse electron beam diodes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...