Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0789
    Keywords: Keywords Nitrification ; Denitrification ; Forest soil ; Spatial variation ; Nutrient cycling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  High spatial variation in nitrification potentials has been observed in forest soils, but explanations for this variability have remained speculative. In the present study we determined whether sample treatment, sample size, denitrification or small-scale variations in abiotic properties could explain spatial variation in nitrogen transformations in the organic horizon of a pine forest soil. Net nitrate production in homogenates of the organic horizon was extremely variable. Sample size (60–600 cm2) had no significant effect on nitrate production. In homogenised samples no increased nitrogen production was observed compared to intact incubated cores. High small-scale variation in nitrate production was observed in the litter (L) horizon. When this stratified L layer was subdivided, high net nitrate production was observed in moss (LM) and fragmented needles, whereas no net nitrate production was found in intact needles. The addition of acetylene, inhibiting nitrous oxide reductase, led to significant nitrous oxide production in the L layer. Low nitrous oxide production was found in the LM layer and none in the fragmentation layer. These results show that denitrification can explain part of the spatial variation and plays a major role in nitrogen transformations in the L layer. The relatively higher pH and the presence of fungi are suggested as factors responsible for high denitrification rates in the L layer. As a consequence homogenisation of the organic horizon could lead to highly variable nitrate production due to denitrifying activity from the needles being introduced into other layers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 107 (1976), S. 241-247 
    ISSN: 1432-072X
    Keywords: Oxidative phosphorylation ; Membrane particles ; Continuous culture ; Maintenance energy ; Growth yield ; Micrococcus denitrificans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract P/O ratios were measured in membrane particles obtained from cells of Micrococcus denitrificans, while growing on different carbon sources. The membrane particles obtained from cells growing actively on glucose, succinate, ethanol and propanol as the carbon and energy sources catalyzed oxidative phosphorylation and yielded respective P/O ratios of 1.4, 1.2, 0.8, and 0.5 with NADH, and 0.8, 0.6, 0.6, and 0.5 with succinate as the electron donors. Not such a difference in P/O ratio is observed in intact resting cells grown with different carbon sources. It is concluded that the influence of the carbon source is probably directed towards the efficiency of oxidative phosphorylation in membrane particles and not in the growing cells. For the aerobic carbon source-limited chemostat cultures the following maximum growth yields were determined: 40.2 and 34.2 for succinate and oxgen, 41.7 and 36.5 for malate and oxygen, 81.4 and 39.4 for mannitol and oxygen, and 77.8 and 43.4 for gluconate and oxygen respectively. With a mathematical model (de K waadsteniet et al., in press) the P/O ratio was valued at 1.4–1.7. Y ATP at μ=0.2 was valued at 8.7–10.9; Y ATP max at 9.6–13.2 and m e at 0.6–4.5 for the most precise experiment (gluconate-limited). The calculation of these growth parameters has been discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Oxidative phosphorylation ; Chemostat culture ; Growth yield ; Mixed substrates ; Ribulose-bisphosphate cycle ; Cytochrome c ; Single cell protein ; Methanol ; Paracoccus denitrificans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Paracoccus denitrificans was grown aerobically during two-(carbon)substrate-limitation on mannitol and methanol in chemostat cultures. Theoretical growth parameters were calculated based on the presence of 2 or 3 sites in the electron-transport chain of Paracoccus denitrificans. Experimental growth parameters determined during two-(carbon)substrate growth were conform to the presence of 3 sites of oxidative phosphorylation, while cells grown only on mannitol possessed 2 sites. The maximum growth yield on adenosine triphosphate (ATP), corrected for maintenance requirements, determined in chemostat experiments in which the methanol concentration is less than 2.11 times the mannitol concentration was 8.6 g of biomass. When the methanol concentration was more than 2.11 times the mannitol concentration the maximum growth yield on adenosine triphosphate decreased due to the more energy consuming process of CO2-assimilation. Cells use methanol only as energy source to increase the amount of mannitol used for assimilation purposes. When the methanol concentration in chemostat experiments was more than 2.11 times the mannitol concentration, all mannitol was used for assimilation and excess energy derived from methanol was used for CO2-assimilation via the ribulose-bisphosphate cycle. The synthesis of ribulosebisphosphate carboxylase was repressed when the methanol concentration in chemostat experiments was less than 2.11 times the mannitol concentration or when Paracoccus denitrificans was grown in batch culture on both methanol and mannitol. When in chemostat experiments the methanol concentration was more than 2.11 times the mannitol concentration ribulose-bisphosphate carboxylase activity could be demonstrated and CO2-assimilation will occur. It is proposed that energy produced in excess activates or derepresses the synthesis of the necessary enzymes of the ribulose-bisphosphate cycle in Paracoccus denitrificans. Consequently growth on any substrate will be carbonas well as energy-limited. When methanol is present in the nutrient cells of Paracoccus denitrificans synthesize a CO-binding type of cytochrome c, which is essential for methanol oxidase activity. The reason for the increase in efficiency of oxidative phosphorylation from 2 to 3 sites is most probably the occurrence of this CO-binding type of cytochrome c in which presence electrons preferentially pass through the a-type cytochrome region of the electron-transport chain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-072X
    Keywords: Cytochrome oxidase ; Paracoccus denitrificans ; Growth yields ; Oxidative phosphorylation ; CO-Ligands ; Chemostat ; Proton translocation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 1. Growth yields and efficiency of energy conservation were the same for aerobic succinate-limited and oxygen-limited cells of Paracoccus denitrificans. 2. A shift from anaerobic nitrate-limitation to aerobic succinatelimitation showed that before and after the shift cells grew with the same capacity of energy conservation. 3. Respiration-driven proton translocation showed the presence of H+-translocating sites 1 and 2, which translocate respectively 2–3 and 4 protons per 2 electrons in oxygen-, anaerobic nitrate-and aerobic succinate-limited cells. 4. Cytochrome spectra and flash-photolysis spectra of oxygen- and nitrate-limited cells gave evidence for the presence of an alternative oxidase, cytochrome a 1, never before recognized in Paracoccus denitrificans. 5. Only a-type cytochromes liganded with CO could be flash-photolysed. No evidence for a functional cytochrome o was found in photolysis experiments. 6. Fast oxidation, before photolysis, of the bc-pool after introduction of oxygen in a CO-liganded sample at-20° to-30° C, indicated the presence of a cytochrome oxidase other than cytochrome a 1 with a very high affinity for oxygen and a low affinity for CO. 7. In photochemical action spectra, light released CO-inhibition of respiration, but the release was independent of the wavelength used (560–610 nm).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Growth yields ; Paracoccus denitrificans ; Oxidative phosphorylation ; Chemostat ; Denitrification ; Proton translocation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 1. Theoretical overall P/2e- ratios were calculated for growth of Paracoccus denitrificans under a variety of culture conditions on the basis of a growth model and recently published schemes of electron transport and associated proton translocation. 2. Experimental overall P/2e- ratios were calculated, using the specific rate of ATP synthesis determined in cultures grown under aerobic carbon source-limited conditions. 3. The experimental P/2e- was equal to the theoretical P/2e- for aerobic sulphate-limited growth with gluconate or succinate as carbon source, on the assumption that site 1 phosphorylation was completely absent. 4. The experimental and the theoretical P/2e- were similar for growth on nitrate as terminal electron acceptor and gluconate, mannitol or succinate as carbon source, on the assumption that nitrate enters the cell via the electroneutral nitrate-nitrite antiport system. 5. The experimental and theoretical P/2e- were similar for growth on nitrite as terminal electron acceptor and mannitol or succinate as carbon source. 6. The experimental P/2e- was substantially lower than the theoretical P/2e- for aerobic growth with nitrate as nitrogen source and gluconate or mannitol as carbon source. The amount of energy needed for assimilative reduction of nitrate to ammonia was calculated from this difference.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 112 (1977), S. 17-23 
    ISSN: 1432-072X
    Keywords: Oxidative phosphorylation ; Proton translocation ; Continuous culture ; Maintenance energy ; Growth yield ; Nitrate respiration ; Paracoccus denitrificans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract P/2e ratios were calculated from anaerobic chemostat cultures of Paracoccus denitrificans with nitrogenous oxides as electron acceptor. P/2e ratios were calculated, using the Y ATP max values determined for aerobic cultures. When succinate was the carbon and energy source the average P/2e values of the sulphate-and succinate-limited cultures with nitrate as electron acceptor were 0.5 and 0.7, respectively, and of the nitrite-limited culture 0.9. With gluconate as carbon and energy source the average P/2e values of the gluconate-limited with nitrate as electron acceptor and nitrate limited cultures were 0.9 and 1.1, respectively. →H+/O ratios measured in cells obtained from sulphate-, succinate, nitrite-, gluconate-and nitratelimited cultures yielded respective average values of 3.4, 4.5, 3.5, 4.8 and 6.2 for endogenous substrates. From our data we conclude that sulphate-and nitritelimitation causes the loss of site I phosphorylation. Nitrite has no influence on the maximum growth yield on ATP. We propose that metabolism in heterotrophically grown cells of Paracoccus dentrificans is regulated on the level of phosphorylation in the site I region of the electron transport chain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 112 (1977), S. 25-34 
    ISSN: 1432-072X
    Keywords: Oxidative phosphorylation ; Proton translocation ; Continuous culture ; Sulphate limitation ; Iron limitation ; Growth yield ; Maintenance energy ; Paracoccus denitrificans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Paracoccus denitrificans was aerobically grown in chemostat culture with succinate or gluconate as carbon source. Due to the presence of two phosphorylation sites in the respiratory chain and the absence of branching, theoretical P/O ratios of 1.71 and 1.82 were calculated for cells growing respectively with succinate and gluconate as carbon source. Using these data, 95% confidence intervals for the P/O ratio were determined, via a mathematical model, at 0.91–1.15 and 1.00–1.37 for sulphate-limited cultures, with respectively succinate and gluconate as carbon source. These results and measurements of P/O ratios in membrane particles and of proton translocation in whole cells have led to the conclusion that site I phosphorylation is affected under sulphate-limited conditions. Under conditions of carbon source-limitation the endogenous →H+/O ratio is about 7–8. Average values of 3.40 and 4.78 were respectively found for sulphate-limited succinate- and gluconate grown cells. For starved cells, oxidizing succinate as exogenous substrate, the →H+/O ratios were determined at about 3–4, independent of the growth limiting factor. It is concluded that the number of protons ejected per pair of electrons per energy-conserving site (→H+/site ratio) is about 3–4, instead of 2 as postulated by the chemiosmotic hypothesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 118 (1978), S. 13-20 
    ISSN: 1432-072X
    Keywords: Methanol dehydrogenase ; Autotrophic growth ; Electron transport chain ; Oxidative phosphorylation ; Proton translocation ; Paracoccus denitrificans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methanol dehydrogenase of Paracoccus denitrificans was shown to be very similar to the enzyme of Pseudomonas sp, M. 27. The K m value for methanol with excess activator (ammonium ions) is 35 μM. The pH optimum for enzyme activity with 2,6-dichlorophe-nolindophenol as electronacceptor was at 9.0 A CO-binding type of cytochrome c was present only in cells grown with methanol as carbon and energy source. It has been shown that methanol-oxidation involves electron-transport via cytochrome c and an a-type cytochrome to oxygen. Antimycin A did not inhibit this electron transport and 90% inhibition was obtained by 375 μM potassium cyanide. Electron transport from endogenous substrates is possible via cytochrome b and possibly cytochrome o to oxygen. Potassium cyanide inhibited 90% of the electron transport via this pathway at a concentration of 1.42 mM. Measurement of respiration-driven proton translocation proved that during oxidation of methanol to formaldehyde by oxygen one mole of adenosine triphosphate is synthesized in the site 3 region of the electron transport chain. The → H+/O value found confirmed the → H+/site ratio of 3–4 found in heterotrophic grown cells. During electron transport from endogenous substrates to oxygen there is a possible synthesis of 3 moles of adenosine triphosphate. In heterotrophically grown cells electron transfer to oxygen follows almost only the branch of the respiratory chain containing cytochrome o. In methanol-grown cells the pathway via the a-type cytochrome seems more important.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 135 (1983), S. 199-204 
    ISSN: 1432-072X
    Keywords: Rhizobium leguminosarum ; Nitrogenase ; Acetylene reduction ; Growth yields ; Chemostat ; Fedbatch
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rhizobium leguminosarum is capable of nitrogen fixation in free living cultures. Nitrogenase activity can be induced when the ammonia supply of a nitrogen-limited culture, in which the oxygen concentration is regulated at 1 μm, is switched off. Assuming a nitrogen content of the cell of 12% the theoretical washout curve of such a culture can be calculated. The measured optical densities are higher than the calculated ones. In one case, 8 days after the shift, the medium supply was switched off and batch growth with molecular nitrogen occurred. Acetylene reduction started immediately in samples taken 2 days after the shift. Addition of ammonium chloride to the test vials inhibited acetylene reduction. The highest specific activities were found 5–8 days after the shift (100 nmol ethylene formed per milligram dry weight per hour). From this activity a μmax of 0.007–0.009 (generation time 76–98 h) on molecular nitrogen can be calculated. After the shift Y mannitol decreased from 33 to 23 in the first 48 h. Three days after the shift Y mannitol had a value of 15. During batch growth Y mannitol had a value of 8. In a carbon-limited fed-batch culture R. leguminosarum shows three distinct growth phases with different values of Y mannitol. This is an indication for a stringent response in the third growth phase, and probably nitrogen fixation occurs under stringent response situations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 137 (1984), S. 176-184 
    ISSN: 1432-072X
    Keywords: Escherichia coli ; Paracoccus denitrificans ; Chemostat ; Recycling fermentor ; Growth yield ; Maintenance ; Nucleotide polyphosphates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Aerobic growth of Escherichia coli and Paracoccus denitrificans has been studied in chemostat, fed batch, and recycling fermentor modes under carbon and energy limitation. Two abrupt drops or discontinuities in molar growth yield, Y, have been found that occur over relatively short ranges in the value of specific growth rate. Before the first discontinuity, Y is constant and maximal. After the first discontinuity, at a doubling time of 33 h, Y becomes constant again and independent of μ until the second discontinuity appears at a doubling time of about 50 h, corresponding to a μ of about 0.014. At this point, Y drops to a lower value that is constant at doubling times longer than 100 h, corresponding to a μ of about 0.007. The second discontinuity is associated in Paracoccus with elevated levels of guanosine tetraphosphate (ppGpp) that impose stringent regulation as has been found previously with Bacillus and Escherichia species. It is thus likely that the stringent response generally occurs in bacteria in vivo at a doubling time of about 50 h. The cause of the first discontinuity is unknown. All experiments indicate that Pirt-type calculations relating μ, Y, and maintenance energy demand are no longer valid. In chemostat experiments, the intercept of the relationship between specific substrate utilization and specific growth rate is defined as maintenance. However, this intercept most probably is caused by stringent regulation at low dilution rates. Three regions of bacterial growth rates are defined by this study, corresponding to doubling times of 0.5 to 15 h, 33 to 50 h, and 〉100 h. Some growth behavior in each region is unique to that region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...