Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The spatial distribution of α- and β-myosin heavy chain isoforms (MHCs) was investigated immunohistochemically in the embryonic human heart between the 4th and the 8th week of development. The development of the overall MHC isoform expression pattern can be outlined as follows: (1) In all stages examined, β-MHC is the predominant isoform in the ventricles and outflow tract (OFT), while α-MHC is the main isoform in the atria. In addition, α-MHC is also expressed in the ventricles at stage 14 and in the OFT from stage 14 to stage 19. This expression pattern is very reminiscent of that found in chicken and rat. (2) In the early embryonic stages the entire atrioventricular canal (AVC) wall expresses α-MHC whereas only the lower part expresses β-MHC. The separation of atria and ventricles by the fibrous annulus takes place at the ventricular margin of the AVC wall. Hence, the β-MHC expressing part of the AVC wall, including the right atrioventricular ring bundle, is eventually incorporated in the atria. (3) In the late embryonic stages (approx. 8 weeks of development) areas of α-MHC reappear in the ventricular myocardium, in particular in the subendocardial region at the top of the interventricular septum. These coexpressing cells are topographically related to the developing ventricular conduction system. (4) In the sinoatrial junction of all hearts examined α- and β-MHC coexpressing cells are observed. In the older stages these cells are characteristically localized at the periphery of the SA node.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 165 (1969), S. 329-341 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Myoid cells of the thymus of hibernating frogs were examined by electron microscopy. This cell type is represented by immature, fully-developed and degenerating cell forms. The immature forms are mainly located at the surface, whereas the developed ones are found in the inside of the thymus. A peculiar type of immature cell containing no thick filaments, but possessing a rich sarcoplasmic reticulum among the thin filaments is described. The developed myoid cells have a myofibrillar apparatus showing regular cross-striations. The myofibrils are arranged in concentric layers around the nucleus. The proposed role and origin of myoid cells and their probable connection with myasthenia gravis are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Using monoclonal antibodies against the M and B subunit isoforms of creatine kinase (CK) we have investigated their distribution in developing human skeletal and cardiac muscle immunohistochemically. It is demonstrated that in skeletal muscle, a switch from CK-B to CK-M takes place around the week 8 of development, whereas in the developing heart, CK-M is the predominant isoform from the earliest stage examined onward (i.e., 4½ weeks of development). In all hearts examined, local differences in concentration of the CK isoforms are observed. The CK-M expression in the developing outflow tract (OFT) and conduction system is described in detail. Between the weeks 5 and 7 of development, the distal portion of the OFT is characterized by low CK-M expression, whereas around the week 8-10 of development the myocardium around the developing semilunar valves in the OFT expresses a very high level of CK-M. At all stages examined, a relatively low CK-M level is observed in those regions in which the “slow” components of the conduction system do develop (e.g., the sinoatrial junction and atrioventricular junction), whereas a relatively high concentration of CK-M is observed in those areas that are destined to become the “fast” components, i.e., the subendocardial myocardium of the ventricles. The high expression of CK-M in the developing “fast components” of the conduction system contrasts with the relatively low expression of CK-M in the force-producing myocardium of the interventricular septum and free ventricular wall.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A monoclonal antibody raised against an extract from the Ganglion Nodosum of the chick and designated GIN2 proves to bind specifically to a subpopulation of cardiomyocytes in the embryonic human heart. In the youngest stage examined (Carnegie stage 14, i. e., 4 1/2 weeks of development) these GIN2-expressing cells are localized in the myocardium that surrounds the foramen between the embryonic left and right ventricle. In the lesser curvature of the cardiac loop this “primary” ring occupies the lower part of the wall of the atrioventricular canal. During subsequent development, GIN2-expressing cells continue to identify the entrance to the right ventricle, but the shape of the ring changes as a result of the tissue remodelling that underlies cardiac septation. During the initial phases of this process the staining remains recognizable as a continuous band of cells in the myocardium that surrounds the developing right portion of the atrioventricular canal, subendocardially in the developing interventricular septum and around the junction of the embryonic left ventricle with the subaortic portion of the outflow tract. During the later stages of cardiac septation, the latter part of the ring discontinues to express GIN2, while upon the completion of septation, no GIN2-expressing cardiomyocytes can be detected anymore. The topographic distribution pattern of GIN suggests that the definitive ventricular conduction system derives from a ring of cells that initially surrounds the “primary” interventricular foramen. The results indicate that the atrioventricular bundle and bundle branches develop from GIN2-expressing myocytes in the interventricular septum, while the “compact” atrioventricular node develops at the junction of the band of GIN2-positive cells in the right atrioventricular junction (the right atrioventricular ring bundle) and the (“pentrating”) atrioventricular bundle. A “dead-end tract” represents remnants of conductive tissue in the anterior part of the top of the interventricular septum. The location of the various components of the avian conduction system is topographically homologous with that of the GIN2-ring in the human embryonic heart, indicating a phylogentically conserved origin of the conduction system in vertebrates.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...