Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 26 (1984), S. 557-559 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 27 (1985), S. 1427-1433 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Surface area has been proposed as a major factor determining the extent of enzymatic hydrolysis of cellulose. We used cornstalk residue (CR) and Solka Floc BW-300 (SF) as substrates and NaOH (a cellulose swelling agent) and iron sodium tartrate (FeTNa, intercolates between cellulose microfibrils) as pretreatments to study the effect of surface area on extent of fermentation. Micropore sizes (8-130 Å) were determined by a solute exclusion technique using glucose, cellobiose, and polyethylene glycols as molecular probes. The pore size distributions follow the logistic model function: I = a/[1+exp(b - cX)] where I is pore volume; X = log D; D is the molecular probe diameter; and a, b, and c are constants. The pore volumes of CR (1.9 mL/g) and SF (1.6 mL/g) are increased to 2.1 mL/g by pretreatment with NaOH. Pretreatment of SF with NaOH and cornstalk residue with FeTNa caused an upward shift in the pore size distribution. Fermentation of untreated CR by rumen microbes resulted in a 46% loss of dry matter while increasing the internal pore size and decreasing the pore volume to 0.9 mL/g. Fermentation of NaOH pretreated CR resulted in a 73% loss of dry matter with little change in pore size, total pore volume, or fiber composition. Fiber analysis indicated that selective utilization of hemicellulose over cellulose in both fermentations was small. The data show that: (1) removal of hemicellulose and lignin increases dry matter disappearance upon fermentation of the remaining material; (2) relative to the size of bacterial cellulases (40-160 Å), the pretreatments have little effect on increasing accessibility of surface internal to the cellulose particles; and (3) the micropore changes caused by NaOH or FeTNa treatment do not explain the enchanced fermentation obtained for treated cornstalk residue. These observations infer that external or macropore surface properties may be a significant factor in determining the extent of utilization of the solid substrates by cellulolytic microorganisms.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 24 (1982), S. 725-730 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 25 (1983), S. 173-183 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fermentation of xylose by Klebsiella pneumoniae (ATCC 8724, formerly known as Aerobacter aerogenes) carried out in our laboratory yields 2,3-butanediol as the major product. Experimental data obtained in this work cannot be explained by the model presently in the literature for the formation of 2,3-butanediol isomers from acetoin isomers. A new model is proposed with the existence of two acetoin reductases and an acetoin racemase. The two reductases were separated and their stereospecificity determined. Extension of the model of other microorganisms is discussed.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 28 (1986), S. 960-964 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Ground corn is now used in industry as an adsorbent to remove water from ethanol vapors. It is stable and inexpensive at 10 cents/lb (22 cents/kg). For regeneration it requires less than 2000 Btu/gal of 190 proof ethanol processed. If necessary, it could be readily saccharified and fermented into ethanol after use. This renewable resource has further exciting potential as an inexpensive adsorbent for water removal from other alcohols, including methanol, isopropanol, and t-butanol. Water sorption capacity in a fixed bed, nonisothermal adsorption column appears to be a function of the heat capacity of the non-adsorbed alcohol vapor, relative to the heat capacity of the corn adsorbent. Methanol, ethanol, isopropanol, and t-butanol containing 17.5 mol% water gave 105,151, 284, and 358 g anhydrous product/kg adsorbent, respectively, per adsorption cycle. This adsorbent, having operational temperature ranges between 80 and 100°C, is indicated to be of potential utility in solvent recycle processes using these industrially important alcohols. Observed adsorption characteristics are discussed in terms of the alcohol properties of molecular size, heat capacity, and diffusivity. The adsorption mechanism is hypothesized to include transport of water molecules into the structure of adjacent starch molecules present in small spherical bodies (diameter of several microns) immobilized on the surface of the corn grit particles.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...