Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract By means of a novel cDNA-based strategy employing the maximum parsimony principle, we have previously deduced probable amino acid sequences for the catalytic domains of the early mammalian ancestors of each of the five extant vitamin K-dependent serine proteases of coagulation, and for their common ancestor from a still earlier stage of vertebrate evolution. In the present study, we employed one of these sequences to construct a molecular model of the catalytic domain of early mammalian protein C and to explore its functional architecture. Following the domain’s progression from the common ancestor of the vitamin K-dependent serine proteases toward extant human protein C, this novel application of homology modelling to a reconstructed amino acid sequence has allowed us to trace the evolution of structural features in a vital coagulation protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The spectrum of somatic cancer-associated missense mutations in the human TP53 gene was studied in order to assess the potential structural and functional importance of various intra-molecular properties associated with these substitutions. Relating the observed frequency of particular amino acid substitutions in the p53 DNA-binding domain to their expected frequency, as calculated from DNA sequence-dependent mutation rates, yielded estimates of their relative clinical observation likelihood (RCOL). Several biophysical properties were found to display significant covariation with RCOL values. Thus RCOL values were observed to decrease with increasing solvent accessibility of the substituted residue and with increasing distance from the p53 DNA-binding and Zn2+-binding sites. The number of adverse steric interactions introduced by an amino acid replacement was found to be positively correlated with its RCOL value, irrespective of the magnitude of the interactions. A gain in hydrogen bond number was found to be only half as likely to come to clinical attention as mutations involving either a reduction or no change in hydrogen bond number. When the difference in potential energy between the wild-type and mutant DNA-binding domains was considered, RCOL values exhibited a minimum around changes of zero. Finally, classification of mutated residues in terms of their protein/solvent environment yielded, for somatic p53 mutations, RCOL values that resembled those previously determined for inherited mutations of human factor IX causing haemophilia B, suggesting that similar mechanisms may be responsible for the mutation-related perturbation of biological function in different protein folds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...