Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Years
Person/Organisation
Keywords
Language
  • 1
    Title: Critical edges in perfect graphs. Zugl.: Berlin, Techn. Univ., Diss., 2000
    Author: Wagler, Annegret
    Publisher: Göttingen :Cuvillier,
    Year of publication: 2000
    Pages: 120 S.
    Type of Medium: Book
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-26
    Description: A graph $G$ is called preperfect if each induced subgraph $G' \subseteq G$ of order at least 2 has two vertices $x,y$ such that either all maximum cliques of $G'$ containing $x$ contain $y$, or all maximum indepentent sets of $G'$ containing $y$ contain $x$, too. Giving a partial answer to a problem of Hammer and Maffray [Combinatorica 13 (1993), 199-208], we describe new classes of minimally non-preperfect graphs, and prove the following characterizations: \begin{itemize} \item[(i)] A graph of maximum degree 4 is minimally non-preperfect if and only if it is an odd cycle of length at least 5, or the complement of a cycle of length 7, or the line graph of a 3-regular 3-connected bipartite graph. \item[(ii)] If a graph $G$ is not an odd cycle and has no isolated vertices, then its line graph is minimally non-preperfect if and only if $G$ is bipartite, 3-edge-connected, regular of degree $d$ for some $d \ge 3$, and contains no 3-edge-connected $d'$-regular subgraph for any $3 \le d' \le d$. \end{itemize}
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-10
    Description: Graphs with circular symmetry, called webs, are relevant w.r.t. describing the stable set polytopes of two larger graph classes, quasi-line graphs and claw-free graphs. Providing a decent linear description of the stable set polytopes of claw-free graphs is a long-standing problem. However, even the problem of finding all facets of stable set polytopes of webs is open. So far, it is only known that stable set polytopes of webs with clique number $\leq 3$ have rank facets only while there are examples with clique number $〉4$ having non-rank facets.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-10
    Description: Graphs with circular symmetry, called webs, are relevant for describing the stable set polytopes of two larger graph classes, quasi-line graphs [{\sl Giles and Trotter 1981, Oriolo 2001}] and claw-free graphs [{\sl Galluccio and Sassano 1997, Giles and Trotter 1981}]. Providing a decent linear description of the stable set polytopes of claw-free graphs is a long-standing problem [{\sl Grötschel, Lov\'asz, and Schrijver 1988}]. However, even the problem of finding all facets of stable set polytopes of webs is open. So far, it is only known that stable set polytopes of webs with clique number $\leq 3$ have rank facets only [{\sl Dahl 1999, Trotter 1975}] while there are examples with clique number $\geq 4$ having non-rank facets [{\sl e.g. Liebling et al. 2003, Oriolo 2001, P\^echer and Wagler 2003}]. In this paper, we provide a construction for non-rank facets of stable set polytopes of webs. We use this construction to prove, for several fixed values of $\omega$ including all odd values at least 5, that there are only finitely many webs with clique number $\omega$ whose stable set polytopes admit rank facets only.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-05
    Description: Point-to-Multipoint systems are one kind of radio systems supplying wireless access to voice/data communication networks. Such systems have to be run using a certain frequency spectrum, which typically causes capacity problems. Hence it is, on the one hand, necessary to reuse frequencies but, on the other hand, no interference must be caused thereby. This leads to the bandwidth allocation problem, a special case of so-called chromatic scheduling problems. Both problems are NP-hard, and there exist no polynomial time approximation algorithms with a guaranteed quality. One kind of algorithms which turned out to be successful for many other combinatorial optimization problems uses cutting plane methods. In order to apply such methods, knowledge on the associated polytopes is required. The present paper contributes to this issue, exploring basic properties of chromatic scheduling polytopes and several classes of facet-defining inequalities.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-26
    Description: We focus on two new types of extremal graphs with respect to perfectness: critically and anticritically perfect graphs that lose their perfectness by simply deleting and adding an arbitrary edge, respectively. We present examples and study properties in order to compare critically and anticritically perfect graphs with minimally imperfect graphs, another type of extremal graphs with respect to perfectness. We discuss two attempts to characterize the classes of all critically and anticritically perfect graphs and give a brief overview on classes of perfect graphs which contain critically or anticritically perfect graphs.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-10
    Description: An edge of a perfect graph $G$ is critical if $G-e$ is imperfect. We would like to decide whether $G - e$ is still {\sl almost perfect} or already {\sl very imperfect}. Via relaxations of the stable set polytope of a graph, we define two superclasses of perfect graphs: rank-perfect and weakly rank-perfect graphs. Membership in those two classes indicates how far an imperfect graph is away from being perfect. We study the cases, when a critical edge is removed from the line graph of a bipartite graph or from the complement of such a graph.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Publication Date: 2014-02-26
    Description: A perfect graph is critical if the deletion of any edge results in an imperfect graph. We give examples of such graphs and prove some basic properties. We investigate the relationship of critically perfect graphs to well-known classes of perfect graphs and study operations preserving critical perfectness.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-26
    Description: We call an edge $e$ of a perfect graph $G$ critical if $G-e$ is imperfect and call $e$ anticritical if $G+e$ is imperfect. The present paper surveys several questions in this context. We ask in which perfect graphs critical and anticritical edges occur and how to detect such edges. The main result by [{\sl Wagler, PhD thesis 2000}] shows that a graph does not admit any critical edge if and only if it is Meyniel. The goal is to order the edges resp.~non-edges of certain perfect graphs s.t. deleting resp.~adding all edges in this order yields a sequence of perfect graphs only. Results of [{\sl Hayward 1985}] and [{\sl Spinrad & Sritharan 1995}] show the existence of such edge orders for weakly triangulated graphs; the line-perfect graphs are precisely these graphs where all edge orders are perfect [{\sl Wagler 2001}]. Such edge orders cannot exist for every subclass of perfect graphs that contains critically resp.~anticritically perfect graphs where deleting resp.~adding an arbitrary edge yields an imperfect graph. We present several examples and properties of such graphs, discuss constructions and characterizations from [{\sl Wagler 1999, Wagler PhD thesis 2000}]. An application of the concept of critically and anticritically perfect graphs is a result due to [{\sl Hougardy & Wagler 2002}] showing that perfectness is an elusive graph property.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-16
    Description: Perfect graphs constitute a well-studied graph class with a rich structure, reflected by many characterizations w.r.t different concepts. Perfect graphs are, e.g., characterized as precisely those graphs $G$ where the stable set polytope STAB$(G)$ coincides with the clique constraint stable set polytope QSTAB$(G)$. For all imperfect graphs STAB$(G) \subset$ QSTAB$(G)$ holds and, therefore, it is natural to measure imperfection in terms of the difference between STAB$(G)$ and QSTAB$(G)$. Several concepts have been developed in this direction, for instance the dilation ratio of STAB$(G)$ and QSTAB$(G)$ which is equivalent to the imperfection ratio imp$(G)$ of $G$. To determine imp$(G)$, both knowledge on the facets of STAB$(G)$ and the extreme points of QSTAB$(G)$ is required. The anti-blocking theory of polyhedra yields all {\em dominating} extreme points of QSTAB$(G)$, provided a complete description of the facets of STAB$(\overline G)$ is known. As this is typically not the case, we extend the result on anti-blocking polyhedra to a {\em complete} characterization of the extreme points of QSTAB$(G)$ by establishing a 1-1 correspondence to the facet-defining subgraphs of $\overline G$. We discuss several consequences, in particular, we give alternative proofs of several famous results.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/postscript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...