Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 10 (Feb. 2006), p. 53-64 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Innovative composite extrusions consisting of an aluminium matrix material with steelfibres for reinforced lightweight constructions require adapted cutting technologies. Due to the resulting tool wear when machining such composite materials, new tools and processes have to be developed. The following article describes experimental investigations concerning conventional drilling operations in comparison to helix milling operations for the manufacturing of holes in these materials. Therefore especially wear and quality aspects are discussed. Furthermore a flexiblecutting process for thin walled lightweight frame connector elements to combine profiles is described. To obtain detailed process knowledge also FEA-Simulations of the thermo-mechanical loads affecting the workpiece during the process are performed
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 10 (Feb. 2006), p. 121-132 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Most technical components applied in industrial practice are subjected to metal cutting operations during their production process. However, this leads to undesirable thermal and mechanical loads affecting the machined workpiece, which can result in an impairment of its serviceability. Due to their small wall thickness lightweight hollow profiles are highly susceptible to the inevitable machining loads and thermal stresses during drilling processes. For the virtual optimization of the machining process and in order to ensure a suitable process strategy, a finiteelement simulation of cutting operations for thin-walled light metal profiles is conducted. Due to the flexibility within creating drill holes of different diameters without tool changes circular milling represents a promising alternative to the application of conventional drilling tools for variable process strategies to handle batch sizes down to one piece efficiently. Hence, this article gives aninsight into the investigations regarding the modeling concepts of the mechanical and thermal loads induced into the thin-walled lightweight frame structure during the circular milling process. Furthermore, process reliability aspects as well as the correlation of the calculated and the measured results will be discussed on the basis of experimental investigations. Finally, this article compares Finite Element Analysis aspects of circular milling processes with conventional drilling processes
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 43 (Apr. 2008), p. 37-46 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Lightweight frame components made of aluminum and load optimized connectingelements allow the reduction of weight and energy consumption as well as the increase of payload.Complex frame structures which nowadays can be designed and optimized with the help of modernsimulation technologies require the use of adapted manufacturing technologies. Especially theflexible machining of single or limited products on the basis of common machining strategies is stillinefficient and economically unacceptable. This article describes the development of adequatestrategies for a high quality machining using simultaneous five-axis milling. Consequently, themachining of composite extruded aluminum profiles with continuously embedded steel-wireelements and the preparation of joining areas on nodes and commonly extruded profiles forinnovative joining by forming processes have been analyzed
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A promising approach to control the material flow within deep drawing and workingmedia based forming processes is the structuring of the tool surfaces in the contact zones between workpiece and die. In order to obtain a sufficient and an optimised material flow respectively – especially for non-symmetric or non-uniform workpiece geometries – a locally adapted distribution of surface structures is a practicable solution. The macroscopic, and also the microscopic surface structures can be manufactured sufficiently by means of a high-speed cutting process. The shape of the tool surface structure has a significant influence on the tribological conditions between workpiece and die. To adjust the surface structure distribution to the required material flow distribution, detailed knowledge about the correlation of the material flow from the tribological conditions between sheet and the forming tool is required. A further innovative approach, particularly for decreasing the friction coefficient, is the use of an innovative hydrostatic pressure system using fluid ducts. Its functional principle is based on the reduction of the contact shear stress at the sheet surface in the contact zone with the forming tool by means of locally applying ahydrostatic fluid pressure. To obtain information about the correlation of the material flow from the tool surface structures and from the parameters of the hydrostatic pressure system respectively, fundamental investigations have been carried out. In order to optimise the material flow, these toolbased approaches can be used as stand-alone solution, or in addition to other systems. If the surface structures and a hydrostatic pressure system are used in combination with the multi-point blankholder, which has already been qualified for the high-pressure sheet metal forming (HBU), a powerful system for the material flow control is available
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 43 (Apr. 2008), p. 97-104 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Different possible reasons for defects have to be considered in machining light-weightaluminum structures. In the machining process, the cutting power affecting the workpiece leads to athermo-mechanical load that can cause undesirable workpiece deformations and thus shapedeviations. Moreover, the microstructure and the machined surface can be influenced, which isdetrimental to the later application of the structures. Previously conducted experimental andsimulative investigations, estimated the circular milling process to be the most suitable machiningoperation that provides the best compromise between mechanical and thermal loads compared todrilling operations [1,2].In this paper the results of machining end-cross-sections of an aluminum profile are presented. Themachining was obtained by a milling process, which is demanding, because of the low profilestiffness. For this process it is important to know the effects of machining in view of the shapedeviations. By means of a Finite-Element-Analysis the deformations of the profile web can becalculated as well as validated by experiments. Based on these results, the appropriate processparameter values for end machining can be defined
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 419-422 (Mar. 2003), p. 823-828 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...