Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A camera with a 3 ns time resolution and a continuous ((approximately-greater-than)100 ns) record length has been developed to image a 1012–1013 W/cm2 ion beam for inertial-confinement-fusion experiments. A thin gold Rutherford-scattering foil placed in the path of the beam scatters ions into the camera. The foil is in a near-optimized scattering geometry and reduces the beam intensity∼seven orders of magnitude. The scattered ions are pinhole imaged onto a 2D array of 39 p-i-n diode detectors; outputs are recorded on LeCroy 6880 transient-waveform digitizers. The waveforms are analyzed and combined to produce a 39-pixel movie which can be displayed on an image processor to provide time-resolved horizontal- and vertical-focusing information.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 63 (1992), S. 4863-4865 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A time-resolved camera has been developed to image the intense ion beam focus on PBFA II. Focused ions from a sector of the ion diode are Rutherford scattered from a thin gold foil on the diode axis and pinhole imaged onto an array of up to 49 PIN detectors to obtain the spatially and temporally resolved images. The signals from these detectors are combined to provide a movie of the beam focus with a time resolution of about 3 ns and a spatial resolution of 2 mm over a 12 mm field of view. Monte Carlo simulations of the camera response are used with the measured ion energy to account for the time-of-flight dispersion of the beam and to convert the recorded signals to an intensity. From measurements on an 81° sector of the diode, average intensities on a 6 mm sphere of about 5 TW/cm2 and energies approaching 80 kJ/cm2 are calculated for standard proton diodes. Corresponding numbers for a lithium diode are less than those measured with protons. The details of the analysis and image reconstruction will be presented along with scaled images from recent ion focusing experiments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The 100 ns, 20 MA pinch-driver Z is surrounded by an extensive set of diagnostics. There are nine radial lines of sight set at 12° above horizontal and each of these may be equipped with up to five diagnostic ports. Instruments routinely fielded viewing the pinch from the side with these ports include x-ray diode arrays, photoconducting detector arrays, bolometers, transmission grating spectrometers, time-resolved x-ray pinhole cameras, x-ray crystal spectrometers, calorimeters, silicon photodiodes, and neutron detectors. A diagnostic package fielded on axis for viewing internal pinch radiation consists of nine lines of sight. This package accommodates virtually the same diagnostics as the radial ports. Other diagnostics not fielded on the axial or radial ports include current B-dot monitors, filtered x-ray scintillators coupled by fiber optics to streak cameras, streaked visible spectroscopy, velocity interferometric system for any reflector, bremsstrahlung cameras, and active shock breakout measurement of hohlraum temperature. The data acquisition system is capable of recording up to 500 channels and the data from each shot is available on the Internet. A major new diagnostic presently under construction is the BEAMLET backlighter. We will briefly describe each of these diagnostics and present some of the highest-quality data from them. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Three x-ray spectrometers, each with a transmission grating dispersion element, are routinely used at the Z soft x-ray facility to measure the spectrum and temporal history of the absolute soft x-ray power emitted from z-pinch and hohlraum radiation sources. Our goal is to make these measurements within an accuracy of ±10%. We periodically characterize the efficiency of the gratings used in the spectrometers by using an electron-impact soft x-ray source, a monochromator, grazing-incidence mirrors, thin filters, and an x-ray charge-coupled device (CCD) detector. We measure the transmission efficiency of the gratings at many photon energies for several grating orders. For each grating, we calculate efficiency as a function of photon energy using published optical constants of gold and multiple-slit Fraunhofer diffraction theory and fit the calculation to the measurements using the physical parameters of the grating as variables. This article describes the measurement apparatus and calibration techniques, discusses the grating efficiency calculation and fitting procedure, and presents recent results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 72 (2001), S. 1223-1223 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Measurements of the hohlraum wall temperature in Z-pinch driven hohlraum experiments require looking through small (2–4 mm diameter) diagnostic holes that undergo some degree of hole closure. The existing soft x-ray diagnostics on Z measure the total flux exiting this diagnostic hole and are therefore affected by this hole closure. To avoid having to measure the effective diagnostic hole area we have designed and constructed an imaging diode array (IDA) that incorporates pinhole imaging and an array of filtered silicon diodes to measure the absolute x-ray intensity from a spatially resolved region of a target. The instrument uses silicon diodes with subnanosecond time response that are sensitive to soft x rays in the range 100–3000 eV. An image of the target area is projected onto the silicon diodes using pinholes. Between each pinhole and it's respective diode is a soft x-ray filter. The material and thickness of the filter are selected to allow unfolding of spectral information in the 100–3000 eV spectral region. We plan to insert a set of grazing-incidence mirrors between each of the filter/diode pairs in a future version of this instrument to better define the spectral bandpass of each diode channel. Radiation from the target region is monitored by a gated microchannel-plate-intensified image recording device that is located immediately behind the diode array. A small shadow in the recorded image corresponds to the specific area of the target that is imaged onto each silicon diode. We are presently fielding this instrument in experiments on the Z facility located at Sandia National Laboratories in Albuquerque, NM. The instrument is located on the same line-of-sight and measures the same spatial region as a filtered fast-framing x-ray pinhole camera and a transmission grating spectrometer. This article describes the design of the IDA diagnostic and presents the results of measurements obtained in hohlraum experiments conducted on Z. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A review of the diagnostics used at Sandia National Laboratories to measure the parameters of intense lithium ion-beam hohlraum target experiments on Particle Beam Fusion Accelerator II will be presented. This diagnostic package contains an extensive suite of x-ray spectral and imaging diagnostics that enable measurements of target temperature and x-ray output. The x-ray diagnostics include time-integrated and time-resolved pinhole cameras, energy-resolved one-dimensional streaked imaging diagnostics, time-integrated and time-resolved grazing incidence spectrographs, a transmission grating spectrograph, an elliptical crystal spectrograph, a bolometer array, an 11- element x-ray diode array, and an 11-element PIN diode detector array. The incident Li beam symmetry and an estimate of incident Li beam power density can be measured from ion beam-induced characteristic x-ray line emission and neutron emission. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A series of experiments was performed with an Applied-B ion diode on the Particle Beam Fusion Accelerator-I, with peak voltage, current, and power of approximately 1.8 MV, 6 MA, and 6 TW, respectively. The purpose of these experiments was to explore issues of scaling of Applied-B diode operation from the sub-TW level on single module accelerators to the multi-TW level on a low impedance, self-magnetically insulated, multimodule accelerator. This is an essential step in the development of the 100-TW level light ion beam driver required for inertial confinement fusion. The accelerator and the diode are viewed as a whole because the power pulse delivered by the 36 imperfectly synchronized magnetically insulated transmission lines to the single diode affects module addition, diode operation, and ion beam focusability. We studied electrical coupling between the accelerator and the diode, power flow symmetry, the ionic composition of the beam, and the focusability of the proton component of the beam. Scaling of the diode impedance behavior and beam quality with electrical drive power is obtained from comparison with lower-power experiments.The diode impedance lifetime was about 10 ns, several times shorter than for lower-power experiments. Azimuthal and top-to-bottom variations of the diode and ion currents were found to be approximately ±10%, compared with an estimated requirement of 5%–7% uniformity to avoid focal blurring by self-magnetic field effects. The ion production efficiency was 80%–90%. However, only 50%±10% of the ion current was carried by protons; the balance was carried by multiply charged carbon and oxygen ions. Activation measurements showed a proton beam energy of approximately 50 kJ. A gas cell filled with 5 Torr of argon was used for beam transport. The macroscopic divergence was 15±10 mrad and the microscopic divergence was 20±15 mrad, values that are similar to those from lower-power experiments. A model of beam focusing is formulated that predicts the proton charge focused onto 0.47-cm radius lithium targets, taking into account beam purity, magnetic bending, small-angle multiple scattering, and intrinsic divergence. The model results and activation measurements of the number of protons focused onto targets agree, and indicate that the spatially averaged (over about 3 cm2) peak focal power was about 0.5 TW/cm.2 The most important limitations on power concentration were found to be the low proton content of the beam, the short impedance lifetime of the diode, and the asymmetric current feed of the accelerator. The short impedance lifetime limited the power coupled to the diode, and caused the voltage at peak ion power to be low, which exacerbates the small-angle scattering problem. The asymmetric feed caused focal blurring through nonuniform self-magnetic bending. At least partly because of the experience gained with low impedance beams during these experiments, the next generation accelerator, the 100-TW Particle Beam Fusion Accelerator-II, has been configured to produce a 25–30-MV Li+ beam rather than a 5-MV proton beam. off
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have examined the effect of illuminating the anode in the Applied-B ion diode in Sandia's PBFA-I accelerator with 60–100 kW/cm2 of extreme-ultraviolet (XUV) photons a few hundred nanoseconds prior to the accelerator shot. We find that XUV illumination significantly shortens the turn-on time of the ion beam, especially under conditions in which the normal "flashover'' ion-source mechanisms are suppressed. In addition to the anticipated XUV photodesorption and photoionization of the anode material, some of the improvement seen with XUV illumination may be due to photoejection of electrons from the power feeds and their subsequent interaction with the anode source. Also, XUV illumination of a fine polypropylene weave located at the virtual cathode radius can preform the virtual cathode, dramatically reducing the turn-on time of the ion beam in the diode.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 20 (1973), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 1700-1702 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A time-resolved magnetic spectrograph employing a gold Rutherford-scattering foil has been constructed to measure the parameters of the intense ion beams generated by Sandia National Laboratories' PBFA-II accelerator. The spectrograph operates by allowing the direct intense beam of PBFA-II to scatter from a thin gold foil to reduce its intensity for magnetic analysis. Details of the spectrograph's construction, detector package, and recent PBFA-II proton data are included in the paper.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...